Photosynthetica 2024, 62(3):232-239 | DOI: 10.32615/ps.2024.027
Selenium improves wheat antioxidant capacity, photosynthetic capacity, and growth under cadmium stress
- Henan Institute of Science and Technology, 453003 Xinxiang, China
Cadmium stress (CS) induced the peroxide damage and inhibited wheat photosynthetic capacity and growth. Compared to CS, selenium (Se) application plus CS bolstered chlorophyll and carotenoid contents, photosynthetic rate, the maximum photochemical efficiency of PSII, the quantum yield of PSII photochemistry, and photochemical quenching, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and gamma-glutamylcysteine synthetase activities, ascorbic acid and glutathione contents, AsA/dehydroascorbic acid and GSH/oxidized glutathione, and decreased nonphotochemical quenching (qN), antioxidant biomarkers malondialdehyde and hydrogen peroxide contents, and electrolyte leakage (EL). At the same time, Se alone declined antioxidant biomarkers contents, qN and EL, and augmented the rest of the aforementioned indexes. Our research implied that Se upregulated wheat's antioxidant capacity. In this way, Se improved wheat photosynthetic performance and growth, especially for 10 μM sodium selenite (Na2SeO3). Consequently, 10 μM Na2SeO3 may be considered a useful exogenous substance to reinforce wheat cadmium tolerance.
Additional key words: antioxidant enzyme; cadmium treatment; nonenzymatic antioxidant; sodium selenite; Triticum aestivum.
Received: January 30, 2024; Revised: June 5, 2024; Accepted: June 26, 2024; Prepublished online: July 30, 2024; Published: October 14, 2024 Show citation
References
- Aebi H.: Catalase in vitro. - Method. Enzymol. 105: 121-126, 1984.
Go to original source... - Bano N., Khan S., Hamid Y. et al.: Effect of foliar application of nanoparticles on growth, physiology, and antioxidant enzyme activities of lettuce (Lactuca sativa L.) plants under cadmium toxicity. - Environ. Sci. Pollut. Res. 30: 99310-99325, 2023.
Go to original source... - Basit F., Abbas S., Zhu M. et al.: Ascorbic acid and selenium nanoparticles synergistically interplay in chromium stress mitigation in rice seedlings by regulating oxidative stress indicators and antioxidant defense mechanism. - Environ. Sci. Pollut. Res. 30: 120044-120062, 2023.
Go to original source... - Brennan T., Frenkel C.: Involvement of hydrogen peroxide in the regulation of senescence in pear. - Plant Physiol. 59: 411-416, 1977.
Go to original source... - Chi G., Fang Y., Zhu B. et al.: Intercropping with Brassica juncea L. enhances maize yield and promotes phytoremediation of cadmium-contaminated soil by changing rhizosphere properties. - J. Hazard. Mater. 461: 132727, 2024.
Go to original source... - Chu J., Yao X., Zhang Z.: Responses of wheat seedlings to exogenous selenium supply under cold stress. - Biol. Trace Elem. Res. 136: 355-363, 2010.
Go to original source... - da Silva D.L., de Mello Prado R., Tenesaca L.F.L. et al.: Silicon attenuates calcium deficiency in rocket plants by increasing the production of non-enzymatic antioxidants compounds. - Sci. Hortic.-Amsterdam 285: 110169, 2021.
Go to original source... - Diao M., Ma L., Wang J. et al.: Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. - J. Plant Growth Regul. 33: 671-682, 2014.
Go to original source... - Elkelish A.A., Soliman M.H., Alhaithloul H.A., El-Esawi M.A.: Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. - Plant Physiol. Biochem. 137: 144-153, 2019.
Go to original source... - Foyer C.H., Noctor G.: Oxygen processing in photosynthesis: regulation and signaling. - New Phytol. 146: 359-388, 2002.
Go to original source... - Gao M., Xu Y., Chang X., Song Z.: Combined effects of carbon nanotubes and cadmium on the photosynthetic capacity and antioxidant response of wheat seedlings. - Environ. Sci. Pollut. Res. 28: 34344-34354, 2021.
Go to original source... - Giannopolitis C.N., Ries S.K.: Superoxide dismutases: I. Occurrence in higher plants. - Plant Physiol. 59: 309-314, 1977.
Go to original source... - Grace S.C., Logan B.A.: Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. - Plant Physiol. 112: 1631-1640, 1996.
Go to original source... - Griffith O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. - Anal. Biochem. 106: 207-212, 1980.
Go to original source... - Hajlaoui F., Hajlaoui H., Krouma A.: Physio-biochemical response to exogenous selenium application of tomatoes (Solanum lycopersicum L.) cultivated in the field under saline irrigation. - Russ. J. Plant Physiol. 70: 142, 2023.
Go to original source... - He S., Lian X., Zhang B. et al.: Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. - Environ. Sci. Pollut. Res. 30: 67552-67564, 2023.
Go to original source... - Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 189-198, 1968.
Go to original source... - Hodges D.M., Andrews C.J., Johnson D.A., Hamilton R.I.: Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. - Physiol. Plantarum 98: 685-692, 1996.
Go to original source... - Komazec B., Cvjetko P., Balen B. et al.: The occurrence of oxidative stress induced by silver nanoparticles in Chlorella vulgaris depends on the surface-stabilizing agent. - Nanomaterials 13: 1967, 2023.
Go to original source... - Li B., Fu Y., Li X. et al.: Brassinosteroids alleviate cadmium phytotoxicity by minimizing oxidative stress in grape seedlings: Toward regulating the ascorbate-glutathione cycle. - Sci. Hortic.-Amsterdam 299: 111002, 2022a.
Go to original source... - Li H., Liu X., Wassie M., Chen L.: Selenium supplementation alleviates cadmium-induced damages in tall fescue through modulating antioxidant system, photosynthesis efficiency, and gene expression. - Environ. Sci. Pollut. Res. 27: 9490-9502, 2020.
Go to original source... - Li H., Wang H., Zhao J. et al.: Physio-biochemical and transcriptomic features of arbuscular mycorrhizal fungi relieving cadmium stress in wheat. - Antioxidants 11: 2390, 2022b.
Go to original source... - Liu B., An C., Jiao S. et al.: Impacts of the inoculation of Piriformospora indica on photosynthesis, osmoregulatory substances, and antioxidant enzymes of alfalfa seedlings under cadmium stress. - Agriculture 12: 1928, 2022.
Go to original source... - Liu Z., Wu X., Yan J. et al.: Silicon reduces cadmium accumulation and toxicity by regulating transcriptional and physiological pathways, and promotes the early growth of tomato seedlings. - Ind. Crop. Prod. 206: 117720, 2023.
Go to original source... - Lu Y., Wu J., Li J.: The alleviating effects and underlying mechanisms of exogenous selenium on both Sb(III) and Sb(V) toxicity in rice seedlings (Oryza sativa L.). - Environ. Sci. Pollut. Res. 30: 89927-89941, 2023.
Go to original source... - Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. - Plant Cell Physiol. 22: 867-880, 1981.
Go to original source... - Nasirzadeh L., Kvarnheden A., Sorkhilaleloo B. et al.: Foliar-applied selenium nanoparticles can alleviate soil-cadmium stress through physio-chemical and stomatal changes to optimize yield, antioxidant capacity, and fatty acid profile of wheat (Triticum aestivum L.). - J. Soil Sci. Plant Nutr. 22: 2469-2480, 2022.
Go to original source... - Rady M.M., Alharby H.F., Desoky E.M. et al.: Citrate-containing lemon juice, as an organic substitute for chemical citric acid, proactively improves photosynthesis, antioxidant capacity, and enzyme gene expression in cadmium-exposed Phaseolus vulgaris. - S. Afr. J. Bot. 160: 88-101, 2023.
Go to original source... - Saidi I., Chtourou Y., Djebali W.: Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. - J. Plant Physiol. 171: 85-91, 2014.
Go to original source... - Sajedi N.A., Ardakani M.R., Madani H. et al.: The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. - Physiol. Mol. Biol. Pla. 17: 215-222, 2011.
Go to original source... - Sepehri A., Gharehbaghli N.: Selenium alleviate cadmium toxicity by improving nutrient uptake, antioxidative and photosynthetic responses of garlic. - Russ. J. Plant Physiol. 66: 152-159, 2019.
Go to original source... - Shan C., Liang Z.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. - Plant Sci. 178: 130-139, 2010.
Go to original source... - Shan C., Ou X.: Hydrogen peroxide is involved in the regulation of ascorbate and glutathione metabolism in wheat leaves under water stress. - Cereal Res. Commun. 46: 21-30, 2018.
Go to original source... - Shin Y.K., Bhandari S.R., Jo J.S. et al.: Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. - Horticulturae 7: 238, 2021.
Go to original source... - Song C., Manzoor M.A., Mao D. et al.: Photosynthetic machinery and antioxidant enzymes system regulation confers cadmium stress tolerance to tomato seedlings pretreated with melatonin. - Sci. Hortic.-Amsterdam 323: 112550, 2024.
Go to original source... - Song Y., Xiang F., Zhang G. et al.: Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. - Front. Plant Sci. 7: 181, 2016.
Go to original source... - Tang H., Liu Y., Gong X. et al.: Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. - Environ. Sci. Pollut. Res. 22: 9999-10008, 2015.
Go to original source... - Wu Z., Liu S., Zhao J. et al.: Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. - Environ. Exp. Bot. 133: 1-11, 2017.
Go to original source... - Yao X., Chu J., Ba C.: Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. -Biol. Trace Elem. Res. 136: 96-105, 2010.
Go to original source... - Zembala M., Filek M., Walas S. et al.: Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. - Plant Soil 329: 457-468, 2010.
Go to original source... - Zhang J., Liang X., Xie S. et al.: Effects of hydrogen sulfide on the growth and physiological characteristics of Miscanthus sacchariflorus seedlings under cadmium stress. - Ecotox. Environ. Safe. 263: 115281, 2023.
Go to original source... - Zhao X., Zhang Y., Zhang X., Shan C.: Putrescine improves salt tolerance of wheat seedlings by regulating ascorbate and glutathione metabolism, photosynthetic performance, and ion homeostasis. - Plant Soil Environ. 69: 512-521, 2023.
Go to original source... - Zhou J., Zhang C., Du B. et al.: Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. -J. Hazard. Mater. 402: 123546, 2021.
Go to original source... - Zhou Z., Wei C., Liu H. et al.: Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity. - Environ. Sci. Pollut. Res. 29: 21739-21750, 2022.
Go to original source... - Zhu Q., Li Y., Gao S., Shan C.: Praseodymium enhanced the tolerance of maize seedlings subjected to cadmium stress by up-regulating the enzymes in the regeneration and biosynthetic pathways of ascorbate and glutathione. - Plant Soil Environ. 67: 633-642, 2021.
Go to original source...




