Photosynthetica 2025, 63(1):64-72 | DOI: 10.32615/ps.2025.005

Subtropical lichens from the Afromontane can display rapid photosynthetic acclimation to simulated climate change

N.T. NDHLOVU1, T.N. KHUZWAYO1, F.V. MINIBAYEVA2, R.P. BECKETT1, 2
1 School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa
2 Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', P.O. Box 261, Kazan 420111, Russia

Afromontane forests are an important part of the KwaZulu Natal region of southern Africa, having a distinctive flora with a high proportion of endemic species, and lichens are keystone members. Unlike other continental areas, KwaZulu Natal climate change is predicted to increase rainfall and cloudiness. In the present study, hydrated Afromontane lichens from both exposed and shaded microhabitats were given either constant [100 µmol(photon) m-2 s-1] or fluctuating [0, 200, 0 µmol(photon) m-2 s-1] light for 8 h a day for 3 d and changes monitored in nonphotochemical quenching (NPQ) and rates of photosynthetic electron transport. In sun but not shade collections, NPQ strongly increased following treatment with constant and fluctuating light. It seems likely that CO2 fixation may be reduced in moist thalli, and the increase in NPQ may reduce ROS formation during exposure to light while hydrated. Sun lichens can readily modify their NPQ in response to increased cloudiness and rainfall expected in KwaZulu Natal.

Additional key words: chlorophyll fluorescence; photobionts; reactive oxygen species; stress.

Received: October 1, 2024; Revised: December 27, 2024; Accepted: February 3, 2025; Prepublished online: March 14, 2025; Published: March 27, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
NDHLOVU, N.T., KHUZWAYO, T.N., MINIBAYEVA, F.V., & BECKETT, R.P. (2025). Subtropical lichens from the Afromontane can display rapid photosynthetic acclimation to simulated climate change. Photosynthetica63(1), 64-72. doi: 10.32615/ps.2025.005
Download citation

References

  1. Abbass K., Qasim M.Z., Song H.M. et al.: A review of the global climate change impacts, adaptation, and sustainable mitigation measures. - Environ. Sci. Pollut. Res. 29: 42539-42559, 2022. Go to original source...
  2. Beckett R.P., Minibayeva F.V., Mkhize K.W.G.: Shade lichens are characterized by rapid relaxation of non-photochemical quenching on transition to darkness. - Lichenologist 53: 409-414, 2021b. Go to original source...
  3. Beckett R.P., Minibayeva F.V., Solhaug K.A., Roach T.: Photoprotection in lichens: adaptations of photobionts to high light. - Lichenologist 53: 21-33, 2021a. Go to original source...
  4. Beckett R.P., Roach T., Minibayeva F.V., Werth S.: Alternative electron transport pathways contribute to tolerance to high light stress in lichenized algae. - Physiol. Plantarum 175: e13904, 2023. Go to original source...
  5. Bilger W., Schreiber U., Bock M.: Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. - Oecologia 102: 425-432, 1995. Go to original source...
  6. Cowan I.R., Lange O.L., Green T.G.A.: Carbon dioxide exchange in lichens: determination of transport and carboxylation characteristics. - Planta 187: 282-294, 1992. Go to original source...
  7. Cung K., Galvan L., Osborne H., Spiegel S.: The effects of sunlight and slope on the lichen community of the Sweeney Granite Mountains reserve. - CEC Res. 5: 1-7, 2021.
  8. Eilers P.H.C., Peeters J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. - Ecol. Model. 42: 199-215, 1988. Go to original source...
  9. Galloway D.J.: Flora of New Zealand: Lichens. Pp. 662. P.D. Hasselberg, New Zealand Government Printer, Wellington 1985.
  10. Gauslaa Y., Goward T.: Melanic pigments and canopy-specific elemental concentration shape growth rates of the lichen Lobaria pulmonaria in unmanaged mixed forest. - Fungal Ecol. 47: 100984, 2020. Go to original source...
  11. Greer D.H.: Sunlight and plant production. - In: Plants in Action. Australian Society of Plant Scientists, 2024. Available at: https://web.archive.org/web/20180319015450/http://plantsinaction.science.uq.edu.au/content/chapter-12-sunlight-and-plant-production.
  12. Hart N.C.G., Washington R., Reason C.J.C.: On the likelihood of tropical-extratropical cloud bands in the south Indian convergence zone during ENSO events. - J. Climate 31: 2797-2817, 2018. Go to original source...
  13. Kalaji M.H., Goltsev V.N., ¯uk-Go³aszewska K. et al.: Chlorophyll Fluorescence: Understanding Crop Performance -Basics and Applications. Pp. 244. CRC Press, Boca Raton 2017. Go to original source...
  14. Lange O.L., Green T.G.A.: High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural conditions. - Oecologia 108: 13-20, 1996. Go to original source...
  15. Lange O.L.: Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation II. Diel and seasonal patterns of net photosynthesis and respiration. - Flora 198: 55-70, 2003. Go to original source...
  16. Leisner J.M.R., Green T.G.A., Lange O.L.: Photobiont activity of a temperate crustose lichen: long-term chlorophyll fluorescence and CO2 exchange measurements in the field. - Symbiosis 23: 165-182, 1997.
  17. Liu H., Koren I., Altaratz O., Chekroun M.D.: Opposing trends of cloud coverage over land and ocean under global warming. -Atmos. Chem. Phys. 23: 6559-6569, 2023. Go to original source...
  18. Mallen-Cooper M., Rodríguez-Caballero E., Eldridge D.J. et al.: Towards an understanding of future range shifts in lichens and mosses under climate change. - J. Biogeogr. 50: 406-417, 2023. Go to original source...
  19. Maphangwa K.W., Musil C.F., Raitt L., Zedda L.: Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem. - Oecologia 169: 257-268, 2012. Go to original source...
  20. Mkhize K.G.W., Minibayeva F.V., Beckett R.P.: Adaptions of photosynthesis in sun and shade in populations of some Afromontane lichens. - Lichenologist 54: 319-329, 2022. Go to original source...
  21. Morales A., Kaiser E.: Photosynthetic acclimation to fluctuating irradiance in plants. - Front. Plant Sci. 11: 268, 2020. Go to original source...
  22. Nelsen M.P., Leavitt S.D., Heller K. et al.: Contrasting patterns of climatic niche divergence in Trebouxia - a clade of lichen-forming algae. - Front. Microbiol. 13: 791546, 2022. Go to original source...
  23. Pallardy S.G.: Physiology of Woody Plants. 3rd Edition. Pp. 464. Elsevier, Amsterdam 2011.
  24. Pannewitz S., Schroeter B., Scheidegger C., Kappen L.: Habitat selection and light conditions: a field study with Lobaria pulmonaria. - In: Jensen M. (ed.): Bibliotheca Lichenologica. Vol. 86. Pp. 281-297. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Berlin-Stuttgart 2003.
  25. Pfleger A., Arc E., Grings M. et al.: Flavodiiron proteins prevent the Mehler reaction in Chlamydomonas reinhardtii. - BBA-Bioenergetics 1865: 149497, 2024. Go to original source...
  26. Pinto I., Zachariah M., Wolski P. et al.: Climate change exacerbated rainfall causing devastating flooding in Eastern South Africa, 2022. Available at: https://www.worldweatherattribution.org/wp-content/uploads/WWA-KZN-floods-scientific-report.pdf.
  27. Pospí¹il P.: Production of reactive oxygen species by photosystem II as a response to light and temperature stress. - Front. Plant Sci. 7: 1950, 2016. Go to original source...
  28. Rambold G., Friedl T., Beck A.: Photobionts in lichens: Possible indicators of phylogenetic relationships? - Bryologist 101: 392-397, 1998. Go to original source...
  29. Reiter R., Höftberger M., Green T.G.A., Türk R.: Photosynthesis of lichens from lichen-dominated communities in the alpine/nival belt of the Alps - II: Laboratory and field measurements of CO2 exchange and water relations. - Flora 203: 34-46, 2008. Go to original source...
  30. Shang H., Li M., Pan X.W.: Dynamic regulation of the light-harvesting system through state transitions in land plants and green algae. - Plants-Basel 12: 1173, 2023. Go to original source...
  31. Solhaug K.A., Gauslaa Y., Nybakken L., Bilger W.: UV-induction of sun-screening pigments in lichens. - New Phytol. 158: 91-100, 2003. Go to original source...
  32. Stanton D.E., Ormond A., Koch N.M., Colesie C.: Lichen ecophysiology in a changing climate. - Am. J. Bot. 110: e16131, 2023. Go to original source...
  33. Steen C.J., Burlacot A., Short A.H. et al.: Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. - Plant Cell Environ. 45: 2428-2445, 2022. Go to original source...
  34. Timm S., Eisenhut M.: Four plus one: vacuoles serve in photorespiration. - Trends Plant Sci. 28: 1340-1343, 2023. Go to original source...