Photosynthetica 2025, 63(2):104-115 | DOI: 10.32615/ps.2025.011

Potential mechanisms for the rapid post-drought reversal of ABA-induced stomatal closure by melatonin, 5-aminolevulinic acid, and brassinosteroids

M. WASEEM1, M.M. HASAN2, Y. HAZZAZI3, B.M. ALHARBI4, M.U. GHANI5, P. AHMAD6, M. CARRIQUÍ
1 Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, 510640 Guangzhou, China
2 Independent Researcher, Green Model Town, 1214 Dhaka, Bangladesh
3 Biology Department, Faculty of Science, 45142 Jazan University, Jazan, Saudi Arabia
4 Biology Department, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
5 Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
6 Department of Botany, GDC, 192301 Pulwama, Jammu and Kashmir, India Research Group on Plant Biology under Mediterranean conditions, Department of Biology, University of the Balearic Islands/Institute of Agro-Environmental Research and Water Economy - INAGEA, Carretera de Valldemossa, 07122 Palma, Spain†

The regulation of stomatal movements is crucial for plants to optimize gas exchange and water balance. The plant hormone abscisic acid (ABA) triggers stomatal closure in response to drought, effectively minimizing water loss to prevent hydraulic failure. However, it significantly constrains photosynthesis, restricting plant growth and productivity. Therefore, rapid post-drought stomatal opening is crucial for earlier photosynthetic recovery. This review explores how phytohormones or plant growth regulators reverse ABA-induced stomatal closure. Phytomelatonin, 5-aminolevulinic acid, and brassinosteroids promote stomatal reopening by either ABA degradation or suppressing its biosynthesis through the downregulation of corresponding genes. This results in less ABA-induced H2O2 accumulation in guard cells, which lowers H2O2-triggered Ca2+ levels in guard cells, and promotes the opening of KAT1 (K+in channels). Insights from this review highlight the potential mechanisms of stomatal reopening for earlier post-drought gas exchange recovery, offering potential avenues to enhance plant productivity under changing environmental conditions.

Additional key words: 5-aminolevulinic acid; abscisic acid; brassinosteroids; drought stress; photosynthesis; phytomelatonin; stomata.

Received: June 27, 2024; Revised: February 13, 2025; Accepted: March 25, 2025; Prepublished online: May 19, 2025; Published: July 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
WASEEM, M., HASAN, M.M., HAZZAZI, Y., ALHARBI, B.M., GHANI, M.U., AHMAD, P., & CARRIQUÍ, M. (2025). Potential mechanisms for the rapid post-drought reversal of ABA-induced stomatal closure by melatonin, 5-aminolevulinic acid, and brassinosteroids. Photosynthetica63(2), 104-115. doi: 10.32615/ps.2025.011
Download citation

References

  1. Abid M., Ali S., Qi L.K. et al.: Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). - Sci. Rep.-UK 8: 4615, 2018. Go to original source...
  2. Akram N.A., Ashraf M.: Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. - J. Plant Growth Regul. 32: 663-679, 2013. Go to original source...
  3. An Y., Liu L., Chen L., Wang L.: ALA inhibits ABA-induced stomatal closure via reducing H2O2 and Ca2+ levels in guard cells. - Front. Plant Sci. 7: 482, 2016. Go to original source...
  4. An Y.Y., Xiong L.J., Hu S., Wang L.: PP2A and microtubules function in 5-aminolevulinic acid-mediated H2O2 signaling in Arabidopsis guard cells. - Physiol. Plantarum 168: 709-724, 2020. Go to original source...
  5. Arnao M.B., Hernández-Ruiz J.: Growth conditions determine different melatonin levels in Lupinus albus L. - J. Pineal Res. 55: 149-155, 2013. Go to original source...
  6. Assmann S.M., Simoncini L., Schroeder J.I.: Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. - Nature 318: 285-287, 1985. Go to original source...
  7. Back K.: Melatonin metabolism, signaling and possible roles in plants. - Plant J. 105: 376-391, 2021. Go to original source...
  8. Back K., Tan D.X., Reiter R.J.: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. - J. Pineal Res. 61: 426-437, 2016. Go to original source...
  9. Belkhadir Y., Chory J.: Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. - Science 314: 1410-1411, 2006. Go to original source...
  10. Bharath P., Gahir S., Raghavendra A.S.: Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. - Front. Plant Sci. 12: 615114, 2021. Go to original source...
  11. Bindu R.C., Vivekanandan M.: Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. - Plant Growth Regul. 26: 15-18, 1998. Go to original source...
  12. Blackman C.J., Brodribb T.J., Jordan G.J.: Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. - Plant Cell Environ. 32: 1584-1595, 2009. Go to original source...
  13. Boudsocq M., Barbier-Brygoo H., Laurière C.: Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. - J. Biol. Chem. 279: 41758-41766, 2004. Go to original source...
  14. Brodribb T., Brodersen C.R., Carriquí M. et al.: Linking xylem network failure with leaf tissue death. - New Phytol. 232: 68-79, 2021. Go to original source...
  15. Brodribb T.J., McAdam S.A.M.: Abscisic acid mediates a divergence in the drought response of two conifers. - Plant Physiol. 162: 1370-1377, 2013. Go to original source...
  16. Brunetti C., Savi T., Nardini A. et al.: Changes in abscisic acid content during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems. - Tree Physiol. 40: 1043-1057, 2020. Go to original source...
  17. Chen S., Jia H., Wang X. et al.: Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. - Mol. Plant 13: 732-744, 2020. Go to original source...
  18. Chen Z., An Y., Wang L.: ALA reverses ABA-induced stomatal closure by modulating PP2AC and SnRK2.6 activity in apple leaves. - Hortic. Res. 10: uhad067, 2023. Go to original source...
  19. Choat B., Brodribb T.J., Brodersen C.R. et al.: Triggers of tree mortality under drought. - Nature 558: 531-539, 2018. Go to original source...
  20. Chung Y., Choe S.: The regulation of brassinosteroid biosynthesis in Arabidopsis. - Crit. Rev. Plant Sci. 32: 396-410, 2013. Go to original source...
  21. Clouse S.D.: Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. - Plant Cell 23: 1219-1230, 2011. Go to original source...
  22. Czarnecki O., Grimm B.: Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. - J. Exp. Bot. 63: 1675-1687, 2012. Go to original source...
  23. Dai L., Li J., Harmens H. et al.: Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. - Plant Physiol. Biochem. 149: 86-95, 2020. Go to original source...
  24. Damour G., Vandame M., Urban L.: Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance. - Tree Physiol. 29: 675-684, 2009. Go to original source...
  25. Demidchik V., Straltsova D., Medvedev S.S. et al.: Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. - J. Exp. Bot. 65: 1259-1270, 2014. Go to original source...
  26. Deuner S., Alves J.D., Zanandrea I. et al.: Stomatal behavior and components of the antioxidative system in coffee plants under water stress. - Sci. Agr. 68: 77-85, 2011. Go to original source...
  27. Dietrich P., Sanders D., Hedrich R.: The role of ion channels in light-dependent stomatal opening. - J. Exp. Bot. 52: 1959-1967, 2001. Go to original source...
  28. Duan H., Wang D., Wei X. et al.: The decoupling between gas exchange and water potential of Cinnamomum camphora seedlings during drought recovery and its relation to ABA accumulation in leaves. - J. Plant Ecol. 13: 683-692, 2020. Go to original source...
  29. Duan H., Wang D., Zhao N. et al.: Limited hydraulic recovery in seedlings of six tree species with contrasting leaf habits in subtropical China. - Front. Plant Sci. 13: 967187, 2022. Go to original source...
  30. Dubbels R., Reiter R.J., Klenke E. et al.: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. - J. Pineal Res. 18: 28-31, 1995. Go to original source...
  31. Erland L.A.E., Yasunaga A., Li I.T.S. et al.: Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. - J. Pineal Res. 66: e12527, 2019. Go to original source...
  32. Flor L., Toro G., Carriquí M. et al.: Severe water stress impact on drought resistance mechanisms and hydraulic vulnerability segmentation in grapevines: the role of rootstock. - J. Exp. Bot., eraf044, 2025. Go to original source...
  33. Fujii H., Zhu J.-K.: Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. - PNAS 106: 8380-8385, 2009. Go to original source...
  34. Fujioka S., Yokota T.: Biosynthesis and metabolism of brassinosteroids. - Annu. Rev. Plant Biol. 54: 137-164, 2003. Go to original source...
  35. Gago J., Carriquí M., Nadal M. et al.: Photosynthesis optimized across land plant phylogeny. - Trends Plant Sci. 24: 947-958, 2019. Go to original source...
  36. Gago J., Daloso D.M., Carriquí M. et al.: The photosynthesis game is in the "inter-play": Mechanisms underlying CO2 diffusion in leaves. - Environ. Exp. Bot. 178: 104174, 2020. Go to original source...
  37. Geiger D., Scherzer S., Mumm P. et al.: Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. - PNAS 106: 21425-21430, 2009. Go to original source...
  38. Ha Y.M., Shang Y., Yang D., Nam K.H.: Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. - Biochem. Bioph. Res. Co. 504: 143-148, 2018. Go to original source...
  39. Hasan M.M., Alabdallah N.M., Alharbi B.M. et al.: GABA: a key player in drought stress resistance in plants. - Int. J. Mol. Sci. 22: 10136, 2021a. Go to original source...
  40. Hasan M.M., Gong L., Nie Z.-F. et al.: ABA-induced stomatal movements in vascular plants during dehydration and rehydration. - Environ. Exp. Bot. 186: 104436, 2021b. Go to original source...
  41. Hasan M.M., Liu X.-D., Waseem M. et al.: ABA activated SnRK2 kinases: An emerging role in plant growth and physiology. - Plant Signal. Behav. 17: 2071024, 2022. Go to original source...
  42. Hasan M.M., Liu X.-D., Yao G.-Q. et al.: Ethylene-mediated stomatal responses to dehydration and rehydration in seed plants. - J. Exp. Bot. 75: 6719-6732, 2024. Go to original source...
  43. Hasanuzzaman M., Nahar K., Anee T.I., Fujita M.: Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. - Physiol. Mol. Biol. Plants 23: 249-268, 2017. Go to original source...
  44. Hattori A., Migitaka H., Iigo M. et al.: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. - Biochem. Mol. Biol. Int. 35: 627-634, 1995.
  45. He Z., Wang Z.-Y., Li J. et al.: Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. - Science 288: 2360-2363, 2000. Go to original source...
  46. Hedrich R., Geiger D.: Biology of SLAC 1-type anion channels - from nutrient uptake to stomatal closure. - New Phytol. 216: 46-61, 2017. Go to original source...
  47. Hsu P.K., Dubeaux G., Takahashi Y., Schroeder J.I.: Signaling mechanisms in abscisic acid-mediated stomatal closure. - Plant J. 105: 307-321, 2021. Go to original source...
  48. Hua D., Wang C., He J. et al.: A plasma membrane receptor kinase, GHR1, mediates abscisic acid-and hydrogen peroxide-regulated stomatal movement in Arabidopsis. - Plant Cell 24: 2546-2561, 2012. Go to original source...
  49. Huber A.E., Melcher P.J., Piñeros M.A. et al.: Signal coordination before, during and after stomatal closure in response to drought stress. - New Phytol. 224: 675-688, 2019. Go to original source...
  50. Inoue S.-I., Iwashita N., Takahashi Y. et al.: Brassinosteroid involvement in Arabidopsis thaliana stomatal opening. - Plant Cell Physiol. 58: 1048-1058, 2017. Go to original source...
  51. Inoue S.-I., Takemiya A., Shimazaki K.-I.: Phototropin signaling and stomatal opening as a model case. - Curr. Opin. Plant Biol. 13: 587-593, 2010. Go to original source...
  52. Iuchi S., Kobayashi M., Taji T. et al.: Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. - Plant J. 27: 325-333, 2001. Go to original source...
  53. Jiang C., Cui Q., Feng K. et al.: Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. - Acta Physiol. Plant. 38: 82, 2016. Go to original source...
  54. Jiang M., Hong K., Mao Y. et al.: Natural 5-aminolevulinic acid: Sources, biosynthesis, detection and applications. - Front. Bioeng. Biotechnol. 10: 841443, 2022. Go to original source...
  55. Jiang M., Zhang J.: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. - J. Exp. Bot. 53: 2401-2410, 2002. Go to original source...
  56. Jones H.G.: Stomatal control of photosynthesis and transpiration. -J. Exp. Bot. 49: 387-398, 1998. Go to original source...
  57. Keller B.U., Hedrich R., Raschke K.: Voltage-dependent anion channels in the plasma membrane of guard cells. - Nature 341: 450-453, 1989. Go to original source...
  58. Khan A., Numan M., Khan A.L. et al.: Melatonin: awakening the defense mechanisms during plant oxidative stress. - Plants-Basel 9: 407, 2020. Go to original source...
  59. Kollist H., Nuhkat M., Roelfsema M.R.G.: Closing gaps: linking elements that control stomatal movement. - New Phytol. 203: 44-62, 2014. Go to original source...
  60. Kondo S., Sugaya S., Sugawa S. et al.: Dehydration tolerance in apple seedlings is affected by an inhibitor of ABA 8ꞌ-hydroxylase CYP707A. - J. Plant Physiol. 169: 234-241, 2012. Go to original source...
  61. Korkmaz A., Değer Ö., Cuci Y.: Profiling the melatonin content in organs of the pepper plant during different growth stages. - Sci. Hortic.-Amsterdam 172: 242-247, 2014. Go to original source...
  62. Korkmaz A., Korkmaz Y., Demirkiran A.R.: Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. - Environ. Exp. Bot. 67: 495-501, 2010. Go to original source...
  63. Kushiro T., Okamoto M., Nakabayashi K. et al.: The Arabidopsis cytochrome P450 CYP707A encodes ABA 8ꞌ-hydroxylases: key enzymes in ABA catabolism. - EMBO J. 23: 1647-1656, 2004. Go to original source...
  64. Kusumi K., Hirotsuka S., Kumamaru T., Iba K.: Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. - J. Exp. Bot. 63: 5635-5644, 2012. Go to original source...
  65. Kwak J.M., Murata Y., Baizabal-Aguirre V.M. et al.: Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis. - Plant Physiol. 127: 473-485, 2001. Go to original source...
  66. Lebaudy A., Hosy E., Simonneau T. et al.: Heteromeric K+ channels in plants. - Plant J. 54: 1076-1082, 2008. Go to original source...
  67. Li C., Tan D.-X., Liang D. et al.: Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. - J. Exp. Bot. 66: 669-680, 2015. Go to original source...
  68. Li C., Wang P., Wei Z. et al.: The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. - J. Pineal Res. 53: 298-306, 2012. Go to original source...
  69. Li D., Wei J., Peng Z. et al.: Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. - J. Pineal Res. 68: e12640, 2020. Go to original source...
  70. Li Z., Su X., Chen Y. et al.: Melatonin improves drought resistance in maize seedlings by enhancing the antioxidant system and regulating abscisic acid metabolism to maintain stomatal opening under PEG-induced drought. - J. Plant Biol. 64: 299-312, 2021. Go to original source...
  71. Liu D., Pei Z.F., Naeem M.S. et al.: 5-aminolevulinic acid activates antioxidative defence system and seedling growth in Brassica napus L. under water-deficit stress. - J. Agron. Crop Sci. 197: 284-295, 2011. Go to original source...
  72. Liu G., Hu Q., Zhang X. et al.: Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. - J. Exp. Bot. 73: 5818-5827, 2022. Go to original source...
  73. Liu J., Huang J., Peng S., Xiong D.: Rewatering after drought: Unravelling the drought thresholds and function recovery-limiting factors in maize leaves. - Plant Cell Environ. 47: 5457-5469, 2024. Go to original source...
  74. Liu L., Xiong L., An Y. et al.: Flavonols induced by 5-aminolevulinic acid are involved in regulation of stomatal opening in apple leaves. - Hortic. Plant J. 2: 323-330, 2016. Go to original source...
  75. Long H., Zheng Z., Zhang Y. et al.: An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress. - PLoS ONE 14: e0213963, 2019. Go to original source...
  76. Lovisolo C., Perrone I., Hartung W., Schubert A.: An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. - New Phytol. 180: 642-651, 2008. Go to original source...
  77. Marchin R.M., Backes D., Ossola A. et al.: Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. - Glob. Change Biol. 28: 1133-1146, 2022. Go to original source...
  78. Marten I., Deeken R., Hedrich R., Roelfsema M.R.G.: Light-induced modification of plant plasma membrane ion transport. - Plant Biol. 12: 64-79, 2010. Go to original source...
  79. Mitchell J.W., Mandava N., Worley J.F. et al.: Brassins - a new family of plant hormones from rape pollen. - Nature 225: 1065-1066, 1970. Go to original source...
  80. Montillet J.-L., Leonhardt N., Mondy S. et al.: An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. - PLoS Biol. 11: e1001513, 2013. Go to original source...
  81. Mustilli A.-C., Merlot S., Vavasseur A. et al.: Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. - Plant Cell 14: 3089-3099, 2002. Go to original source...
  82. Naeem M.S, Jin Z.L., Wan G.L. et al.: 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). - Plant Soil 332: 405-415, 2010. Go to original source...
  83. Nagahatenna D.S., Langridge P., Whitford R.: Tetrapyrrole-based drought stress signalling. - Plant Biotechnol. J. 13: 447-459, 2015. Go to original source...
  84. Nambara E., Marion-Poll A.: Abscisic acid biosynthesis and catabolism. - Annu. Rev. Plant Biol. 56: 165-185, 2005. Go to original source...
  85. Neill S., Desikan R., Hancock J.: Hydrogen peroxide signalling. -Curr. Opin. Plant Biol. 5: 388-395, 2002. Go to original source...
  86. Nolan T.M., Vuka¹inoviæ N., Liu D. et al.: Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. - Plant Cell 32: 295-318, 2020. Go to original source...
  87. Oh K., Matsumoto T., Yamagami A. et al.: Fenarimol, a pyrimidine-type fungicide, inhibits brassinosteroid biosynthesis. - Int. J. Mol. Sci. 16: 17273-17288, 2015. Go to original source...
  88. Park S., Lee D.E., Jang H. et al.: Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. - J. Pineal Res. 54: 258-263, 2013. Go to original source...
  89. Park S.-Y., Fung P., Nishimura N. et al.: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. - Science 324: 1068-1071, 2009. Go to original source...
  90. Pei Z.-M., Murata Y., Benning G. et al.: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. - Nature 406: 731-734, 2000. Go to original source...
  91. Peltier D.M.P., Carbone M.S., McIntire C.D. et al.: Carbon starvation following a decade of experimental drought consumes old reserves in Pinus edulis. - New Phytol. 240: 92-104, 2023. Go to original source...
  92. Pirasteh-Anosheh H., Saed-Moucheshi A., Pakniyat H., Pessarakli M.: Stomatal responses to drought stress. - In: Ahmad P. (ed.): Water Stress and Crop Plants: A Sustainable Approach. Pp. 24-40. John Wiley & Sons, Chichester 2016. Go to original source...
  93. Posmyk M.M., Janas K.M.: Melatonin in plants. - Acta Physiol. Plant. 31: 1-11, 2009. Go to original source...
  94. Postiglione A.E., Muday G.K.: Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. - Plant Physiol. 192: 469-487, 2023. Go to original source...
  95. Qin X., Zeevaart J.A.: The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. - PNAS 96: 15354-15361, 1999. Go to original source...
  96. Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E.: ABA perception and signalling. - Trends Plant Sci. 15: 395-401, 2010. Go to original source...
  97. Rehschuh R., Cecilia A., Zuber M. et al.: Drought-induced xylem embolism limits the recovery of leaf gas exchange in Scots pine. - Plant Physiol. 184: 852-864, 2020. Go to original source...
  98. Reiter R., Tan D.-X., Terron M. et al.: Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. - Acta Biochim. Pol. 54: 1-9, 2007. Go to original source...
  99. Ressmeyer A.-R., Mayo J.C., Zelosko V. et al.: Antioxidant properties of the melatonin metabolite N1-acetyl- 5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. - Redox Rep. 8: 205-213, 2003. Go to original source...
  100. Ruehr N.K., Grote R., Mayr S., Arneth A.: Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. - Tree Physiol. 39: 1285-1299, 2019. Go to original source...
  101. Sachdev S., Ansari S.A., Ansari M.I. et al.: Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. - Antioxidants 10: 277, 2021. Go to original source...
  102. Saito S., Hirai N., Matsumoto C. et al.: Arabidopsis CYP707As encode (+)-abscisic acid 8ꞌ-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. - Plant Physiol. 134: 1439-1449, 2004. Go to original source...
  103. Saruhashi M., Kumar Ghosh T., Arai K. et al.: Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. - PNAS 112: E6388-E6396, 2015. Go to original source...
  104. Schroeder J.I., Hagiwara S.: Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. - Nature 338: 427-430, 1989. Go to original source...
  105. Schwartz A.: Role of Ca2+ and EGTA on stomatal movements in Commelina communis L. - Plant Physiol. 79: 1003-1005, 1985. Go to original source...
  106. Sharma M., Kumar P., Verma V. et al.: Understanding plant stress memory response for abiotic stress resilience: molecular insights and prospects. - Plant Physiol. Biochem. 179: 10-24, 2022. Go to original source...
  107. Shimazaki K., Iino M., Zeiger E.: Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. - Nature 319: 324-326, 1986. Go to original source...
  108. Shimazaki K.-I., Doi M., Assmann S.M., Kinoshita T.: Light regulation of stomatal movement. - Annu. Rev. Plant Biol. 58: 219-247, 2007. Go to original source...
  109. Sierla M., Waszczak C., Vahisalu T., Kangasjärvi J.: Reactive oxygen species in the regulation of stomatal movements. - Plant Physiol. 171: 1569-1580, 2016. Go to original source...
  110. Stege P.W., Sombra L.L., Messina G. et al.: Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. - Electrophoresis 31: 2242-2248, 2010. Go to original source...
  111. Supriya L., Durgeshwar P., Muthamilarasan M., Padmaja G.: Melatonin mediated differential regulation of drought tolerance in sensitive and tolerant varieties of upland cotton (Gossypium hirsutum L.). - Front. Plant Sci. 13: 821353, 2022. Go to original source...
  112. Tajdel M., Mitu³a F., Ludwików A.: Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway. - Plant Signal. Behav. 11: e1139277, 2016. Go to original source...
  113. Takahashi Y., Ebisu Y., Shimazaki K.-I.: Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors. - Plant Physiol. 74: 815-822, 2017. Go to original source...
  114. Takahashi Y., Zhang J., Hsu P.-K. et al.: MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. - Nat. Commun. 11: 12, 2020. Go to original source...
  115. Tan D.-X., Hardeland R., Manchester L.C. et al.: Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. - J. Exp. Bot. 63: 577-597, 2012. Go to original source...
  116. Tan D.-X., Manchester L.C., Esteban-Zubero E. et al.: Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. - Molecules 20: 18886-18906, 2015. Go to original source...
  117. Tan D.-X., Manchester L.C., Reiter R.J. et al.: Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. - Free Radical Bio. Med. 29: 1177-1185, 2000. Go to original source...
  118. Tan D.-X., Manchester L.C., Terron M.P. et al.: One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? - J. Pineal Res. 42: 28-42, 2007. Go to original source...
  119. Tanaka R., Tanaka A.: Tetrapyrrole biosynthesis in higher plants. - Annu. Rev. Plant Biol. 58: 321-346, 2007. Go to original source...
  120. Tomasella M., Casolo V., Aichner N. et al.: Non-structural carbohydrate and hydraulic dynamics during drought and recovery in Fraxinus ornus and Ostrya carpinifolia saplings. - Plant Physiol. Biochem. 145: 1-9, 2019. Go to original source...
  121. Tombesi S., Nardini A., Frioni T. et al.: Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. - Sci. Rep.-UK 5: 12449, 2015. Go to original source...
  122. Trifilò P., Casolo V., Raimondo F. et al.: Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: the possible link between carbon starvation and hydraulic failure. - Plant Physiol. Biochem. 120: 232-241, 2017. Go to original source...
  123. Urban J., Ingwers M.W., McGuire M.A., Teskey R.O.: Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. - J. Exp. Bot. 68: 1757-1767, 2017. Go to original source...
  124. Virlouvet L., Fromm M.: Physiological and transcriptional memory in guard cells during repetitive dehydration stress. - New Phytol. 205: 596-607, 2015. Go to original source...
  125. Vitalini S., Gardana C., Simonetti P. et al.: Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. - J. Pineal Res. 54: 322-333, 2013. Go to original source...
  126. Wagner Y., Volkov M., Nadal-Sala D. et al.: Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine. - Physiol. Plantarum 175: e13995, 2023. Go to original source...
  127. Wang K., Xing Q., Ahammed G.J., Zhou J.: Functions and prospects of melatonin in plant growth, yield, and quality. - J. Exp. Bot. 73: 5928-5946, 2022. Go to original source...
  128. Wang L.J., Jiang W.B., Huang B.J.: Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. - Physiol. Plantarum 121: 258-264, 2004. Go to original source...
  129. Wang P., Grimm B.: Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. - Photosynth. Res. 126: 189-202, 2015. Go to original source...
  130. Wang P., Yin L., Liang D. et al.: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. - J. Pineal Res. 53: 11-20, 2012. Go to original source...
  131. Wang Y., Noguchi K., Ono N. et al.: Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. - PNAS 111: 533-538, 2014. Go to original source...
  132. Wang Z.-Y., Seto H., Fujioka S. et al.: BRI1 is a critical component of a plasma-membrane receptor for plant steroids. - Nature 410: 380-383, 2001. Go to original source...
  133. Waseem M., Nie Z.-F., Yao G.-Q. et al.: Dew absorption by leaf trichomes in Caragana korshinskii: an alternative water acquisition strategy for withstanding drought in arid environments. - Physiol. Plantarum 172: 528-539, 2021. Go to original source...
  134. Waseem M., Yao G.-Q., Hasan M.M. et al.: Divergent hydraulic and gas-exchange strategies in two closely related Salix species. - J. Plant Ecol. 17: rtae075, 2024. Go to original source...
  135. Watkins J.M., Hechler P.J., Muday G.K.: Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. - Plant Physiol. 164: 1707-1717, 2014. Go to original source...
  136. Wu Y., Liao W., Dawuda M.M. et al.: 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. - Plant Growth Regul. 87: 357-374, 2019. Go to original source...
  137. Xiong L., An Y., Wang L.: [The role of microtubule skeleton and PP1/PP2A protein phosphatase in ALA-ABA regulating stomatal movement in apple leaves.] - Acta Hortic. Sin. 45: 2073-2088, 2018. [In Chinese]
  138. Yang S., Zhao Y., Qin X. et al.: New insights into the role of melatonin in photosynthesis. - J. Exp. Bot. 73: 5918-5927, 2022. Go to original source...
  139. Yang Y., Zheng Q., Liu M. et al.: Difference in sodium spatial distribution in the shoot of two canola cultivars under saline stress. - Plant Cell Physiol. 53: 1083-1092, 2012. Go to original source...
  140. Ye W., Adachi Y., Munemasa S. et al.: Open Stomata 1 kinase is essential for yeast elicitor-induced stomatal closure in Arabidopsis. - Plant Cell Physiol. 56: 1239-1248, 2015. Go to original source...
  141. Youssef T., Awad M.A.: Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. - J. Plant Growth Regul. 27: 1-9, 2008. Go to original source...
  142. Zhang H., Zhu J., Gong Z., Zhu J.-K.: Abiotic stress responses in plants. - Nat. Rev. Genet. 23: 104-119, 2022. Go to original source...
  143. Zhang J., Chen X., Song Y., Gong Z.: Integrative regulatory mechanisms of stomatal movements under changing climate. - J. Integr. Plant Biol. 66: 368-393, 2024. Go to original source...
  144. Zhang N., Zhao B., Zhang H.-J. et al.: Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). - J. Pineal Res. 54: 15-23, 2013. Go to original source...
  145. Zhang X., Zhang L., Dong F. et al.: Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. - Plant Physiol. 126: 1438-1448, 2001. Go to original source...
  146. Zhao A., Fang Y., Chen X. et al.: Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein. - PNAS 111: 6630-6635, 2014. Go to original source...
  147. Zhao M.-G., Tian Q.-Y., Zhang W.-H.: Ethylene activates a plasma membrane Ca2+-permeable channel in tobacco suspension cells. - New Phytol. 174: 507-515, 2007. Go to original source...
  148. Zheng X., Zhou J., Tan D.-X. et al.: Melatonin improves waterlogging tolerance of Malus baccata (Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration. - Front. Plant Sci. 8: 483, 2017. Go to original source...
  149. Zlobin I.E., Vankova R., Dobrev P.I. et al.: Abscisic acid and cytokinins are not involved in the regulation of stomatal conductance of Scots pine saplings during post-drought recovery. - Biomolecules 13: 523, 2023. Go to original source...