Photosynthetica 2025, 63(2):140-150 | DOI: 10.32615/ps.2025.016

Increased brassinolide accumulation and increased growth in low-light-grown transgenic tobacco

R. GREBENOK1, T. UGINE2, M. GALANTE1, N. GREBENOK1, H. IQBAL1, N. OLSZEWSKI1, X. KRULL1, T. LINGENFELTER1, R. SEDANO1, E. CORIGLIANO1, A. GREBENOK1
1 Department of Biology, Canisius University, Buffalo, 14208 New York, U.S.A
2 Department of Biology, Cornell University, Ithaca, 14853 New York, U.S.A

Transgenic tobacco, demonstrating bacterial cholesterol oxidase (CO) activity in the chloroplast, grown at PAR ~280 μmol(photon) m-2s-1 (low light), contained thylakoid membranes that include a greater variety of steroids and had reduced contents of sterol and sterol-esters per milligram chlorophyll in comparison to controls. The mature transgenic plants, grown at low light, demonstrate a ~3× larger root dry mass, ~3× larger stem dry mass, ~2× larger leaf dry mass, ~2× increased leaf number, and ~5× increased flower number than controls. Mature transgenic flowering plants, develop to first flower ~2× faster and grow ~30% taller than control flowering plants. The transgenic seedlings contain approximately 2× higher amounts of brassinolide (BR) per g fresh mass than controls. We propose that since the CO enzyme produces increased contents of oxidized steroids in the thylakoid membrane, this encourages enhanced photosynthesis, enhanced BR contents, and increased biomass accumulation.

Additional key words: brassinolide; cholesterol oxidase; oxidized sterols; photosynthesis; productivity.

Received: March 20, 2025; Revised: March 20, 2025; Accepted: May 5, 2025; Prepublished online: June 24, 2025; Published: July 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GREBENOK, R., UGINE, T., GALANTE, M., GREBENOK, N., IQBAL, H., OLSZEWSKI, N., ... GREBENOK, A. (2025). Increased brassinolide accumulation and increased growth in low-light-grown transgenic tobacco. Photosynthetica63(2), 140-150. doi: 10.32615/ps.2025.016
Download citation

References

  1. Albertos P., Wlk T., Griffiths J. et al.: Brassinosteroid-regulated bHLH transcription factor CESTA induces the gibberellin 2-oxidase GA2ox7. - Plant Physiol. 188: 2012-2025, 2022. Go to original source...
  2. Andersson M.X., Goksor M., Sandelius A.S.: Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. - J. Biol. Chem. 2: 1170-1174, 2007. Go to original source...
  3. Andersson M.X., Kjellberg J.M., Sandelius A.S.: Chloroplast biogenesis. Regulation of lipid transport to the thylakoid in chloroplasts isolated from expanding and fully expanded leaves of pea. - Plant Physiol. 127: 184-193, 2001. Go to original source...
  4. Bajguz A., Chmur M., Gruszka D.: Comprehensive overview of the brassinosteroid biosynthesis pathways: substrates, products, inhibitors, and connections. - Front. Plant Sci. 11: 1034, 2020. Go to original source...
  5. Busheva M., Velitchkova M., Markova T., Zanev Y.: Effects of cholesterol and benzyl alcohol on fluorescence transients of pea thylakoids. - J. Photoch. Photobio. B 42: 240-244, 1998. Go to original source...
  6. Clouse S.D., Zurek D.M., McMorris T.C., Baker M.E.: Effect of brassinolide on gene expression in elongating soybean epicotyls. - Plant Physiol. 100: 1377-1383, 1992. Go to original source...
  7. Corbin D.R., Grebenok R.J., Ohnmeiss T.E. et al.: Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. - Plant Physiol. 126: 1116-1128, 2001. Go to original source...
  8. Dekker J.P., Boekema E.J.: Supramolecular organization of thylakoid membrane proteins in green plants. - BBA-Bioenergetics 1706: 12-39, 2005. Go to original source...
  9. Ford R.C., Barber J.: Incorporation of sterol into chloroplast thylakoid membranes and its effects on fluidity and function. -Planta 158: 35-41, 1983. Go to original source...
  10. Fujioka S., Li J., Choi Y.H. et al.: The Arabidopsis deetiolated2 mutant is blocked early in brassiosteroid biosynthesis. - Plant Cell 9: 1951-1962, 1997. Go to original source...
  11. G³owacka K., Kromdijk J., Kucera K. et al.: Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. - Nat. Commun. 9: 868, 2018. Go to original source...
  12. Goda H., Shimada Y., Asami T. et al.: Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. - Plant Physiol. 130: 1319-1334, 2002. Go to original source...
  13. Grebenok R.J., Adler J.H.: Ecdysteroid distribution during development of spinach. - Phytochemistry 30: 2905-2910, 1991. Go to original source...
  14. Hartmann M.-A., Benveniste P.: Plant membrane sterols: isolation, identification, and biosynthesis. - Method. Enzymol. 148: 632-650, 1987. Go to original source...
  15. Heyer J., Parker B., Becker D. et al.: Steroid profiles of transgenic tobacco expressing an Actinomyces 3-hydroxysteroid oxidase gene. - Phytochemistry 65: 2967-2976, 2004. Go to original source...
  16. Kim T.-W., Lee S.M., Joo S.-H. et al.: Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. - Plant Cell Environ. 30: 679-689, 2007. Go to original source...
  17. Kwok E.Y., Hanson M.R.: Plastids and stromules interact with the nucleus and cell membrane in vascular plants. - Plant Cell Rep. 23: 188-195, 2004. Go to original source...
  18. Laule O., Fürholz A., Chang H.-S. et al.: Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. - PNAS 100: 6866-6871, 2003. Go to original source...
  19. Leister D.: Genetic engineering, synthetic biology and the light reactions of photosynthesis. - Plant Physiol. 179: 778-793, 2019. Go to original source...
  20. Lichtenthaler H.K., Schwender J., Disch A., Rohmer M.: Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. - FEBS Lett. 400: 271-274, 1997. Go to original source...
  21. MacKinney G.: Absorption of light by chlorophyll solutions. - J. Biol. Chem. 140: 315-322, 1941. Go to original source...
  22. MacLachlan J., Wotherspoon A.T.L., Ansell R.O., Brooks C.J.W.: Cholesterol oxidase: sources, physical properties and analytical applications. - J. Steroid Biochem. 72: 169-195, 2000. Go to original source...
  23. Mehrshahi P., Stefano G., Andaloro J.M. et al.: Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. - PNAS 110: 12126-12131, 2013. Go to original source...
  24. Melo N., Tavares R.M., Morais F. et al.: Lipid composition of thylakoid membranes from leaves and regreened spathes of Zanthedeschis aethiopica. - Phytochemistry 40: 1367-1371, 1995. Go to original source...
  25. Moreau R.A., Whitaker B.D., Hicks K.B.: Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. - Prog. Lipid Res. 41: 457-500, 2002. Go to original source...
  26. Morré D.J., Penel C., Morré D.M. et al.: Cell-free transfer and sorting of membrane lipids in spinach: donor and acceptor specificity. - Protoplasma 160: 49-64, 1991. Go to original source...
  27. Motteran L., Pilone M.S., Molla G. et al.: Cholesterol oxidase from Brevibacterium sterolicum. - J. Biol. Chem. 276: 18024-18030, 2001. Go to original source...
  28. Noguchi T., Fujioka S., Takatsuto S. et al.: Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis. - Plant Physiol. 120: 833-840, 1999. Go to original source...
  29. Oh M.-H., Clouse S.D.: Brassinolide affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida. - Plant Cell Rep. 17: 921-924, 1998. Go to original source...
  30. Olmstead A.L., Rhode P.W.: Adapting North American wheat production to climatic challenges, 1839-2009. - PNAS 108: 480-485, 2011. Go to original source...
  31. Pachthong C., Supyen D., Buddhasukh D., Jatistienr A.: Isolation and characterization of brassinolide and castasterone in the pollen of pumpkin. - Chaing Mai J. Sci. 33: 95-101, 2006.
  32. Pérez-Sancho J., Tilsner J., Samuels A.L. et al.: Stitching organelles: organization and function of specialized membrane contact sites in plants. - Trends Cell Biol. 26: 705-717, 2016. Go to original source...
  33. Popova A.V., Velitchkova M., Zanev Y.: Effect of membrane fluidity on photosynthetic oxygen production reactions. - Z. Naturforsch. 62: 253-260, 2007. Go to original source...
  34. Schülter U., Köpke D., Altmann T., Müssig C.: Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbb1 mutant. - Plant Cell Environ. 25: 787-791, 2002. Go to original source...
  35. Shafiq I., Hussain S., Raza M.A. et al.: Crop photosynthetic response to light quality and light intensity. - J. Integr. Agr. 20: 4-23, 2021. Go to original source...
  36. Sheng J., Li X., Zhang D.: Gibberellin, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. - Hortic. Plant J. 8: 243-250, 2022. Go to original source...
  37. Siegenthaler P.-A., Trémolières A.: Role of acyl lipids in the function of photosynthetic membranes in higher plants. - In: Paul-André S., Norio M. (ed.): Lipids in Photosynthesis: Structure, Function and Genetics. Pp. 145-173. Springer, Dordrecht 1998. Go to original source...
  38. Silvestro D., Andersen T.G., Schaller H., Jensen P.E.: Plant sterol metabolism. Δ7-sterol-C5-desaturase (STE1/DWARF7), Δ5,7-sterol-Δ7-reductase (DWARF5) and Δ24-sterol- Δ24-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. - PLoS ONE 8: e56429, 2013. Go to original source...
  39. Simkin A.J., McAusland L., Lawson T., Raines C.A.: Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. - Plant Physiol. 175: 134-145, 2017. Go to original source...
  40. Smith A.G., Brooks C.J.W.: The mechanism of the isomerization of cholest-5-en-3-one to cholest-4-en-3-one by cholesterol oxidase. - Biochem. Soc. T. 5: 1088-1090, 1977. Go to original source...
  41. Tobey J.A., Reilly J.M., Kane S.: Economic implications of global climate change for world agriculture. - J. Agr. Resour. Econ. 17: 195-204, 1992.
  42. van Dijk M., Morley T., Rau M.L., Saghai Y.: A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. - Nat. Food 2: 494-501, 2021. Go to original source...
  43. Venkatramesh M., Karunanandaa B., Sun B. et al.: Expression of a Streptomyces 3-hydroxysteroid oxidase gene in oilseeds for converting phytosterols to phytostanols. - Phytochemistry 62: 39-46, 2003. Go to original source...
  44. Vuka¹inoviæ N., Russinova E.: BRexit: possible brassinosteroid export and transport routes. - Trends Plant Sci. 23: 285-292, 2018. Go to original source...
  45. Wang M., Chen J., Lian T., Zhan W.: Mimicking photosynthesis with supercomplexed lipid nanoassemblies: design, performance, and enhancement role of cholesterol. - Langmuir 32: 7326-7338, 2016. Go to original source...
  46. Wang Z., Xu C., Benning C.: TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. - Plant J. 70: 614-623, 2012. Go to original source...
  47. Xu C., Fan J., Cornish A.J., Benning C.: Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. - Plant Cell 20: 2190-2204, 2008. Go to original source...
  48. Yamamoto Y., Ford R., Barber J.: Relationship between thylakoid membrane fluidity and the functioning of pea chloroplasts. Effects of cholesteryl hemisuccinate. - Plant Physiol. 67: 1069-1072, 1981. Go to original source...
  49. Yang A.J., Anjum S.A., Wang L. et al.: Effect of foliar application of brassinolide on photosynthesis and chlorophyll fluorescence traits of Leymus chinensis under varying levels of shade. - Photosynthetica 56: 873-883, 2018. Go to original source...
  50. Zhou X.-T., Wang F., Ma Y.-P. et al.: Ectopic expression of SsPETE2, a plastocyanin from Suaeda salsa, improves plant tolerance to oxidative stress. - Plant Sci. 268: 1-10, 2018. Go to original source...
  51. Zurek D.M., Rayle D.L., McMorris T.C., Clouse S.D.: Investigation of gene expression, growth kinetics and wall extensibility during brassinosteroid-regulated stem elongation. - Plant Physiol. 104: 505-513, 1994. Go to original source...