Photosynthetica 2025,63(4):309-321 | DOI: 10.32615/ps.2025.029

Spectral light quality differentially modulates PSII energy partitioning among soybean genotypes

M. MARTÍNEZ-MORÉ1, 2, S. SIMONDI3, M.M. SAINZ4, V. BONNECARRÈRE5, S. FERNÁNDEZ6, G. QUERO1
1 Photobiology Laboratory, Department of Plant Biology, Faculty of Agronomy, Universidad de la República, Garzón 809, Montevideo, Uruguay
2 Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
3 Mathematics Area, Faculty of Exact and Natural Sciences, Universidad Nacional de Cuyo (FCEN-UNCuyo), Padre Contreras 1300, Mendoza, Argentina
4 Biochemistry Laboratory, Department of Plant Biology, Faculty of Agronomy, Universidad de la República, Garzón 809, Montevideo, Uruguay
5 Instituto Nacional de Investigación Agropecuaria (INIA), Plant Genetic Improvement and Biotechnology Area, Wilson Ferreira Aldunate Experimental Station, Ruta 48, Km 10, Rincón del Colorado, 90200, Canelones, Uruguay
6 Faculty of Engineering, Institute of Electrical Engineering, Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay

Cultivated soybean is a globally important crop; understanding its responses to different light spectra within the canopy is essential, especially considering the limited agricultural area. Energy flux and spectral quality are key components of the light environment that determine photosynthesis and, consequently, plant growth. These factors influence the composition and structure of photosystem II, thereby affecting energy partitioning between photochemical and nonphotochemical processes. This study evaluated the photosynthetic performance of two soybean genotypes under four light environments with distinct spectral compositions but equal energy flux. Results showed that PSII efficiency improved by the wavelengths outside the PAR range, irrespective of genotype. However, quantum yield parameters revealed genotype-specific responses under blue and red light. Plants exposed exclusively to red light exhibited reduced photosynthetic efficiency and increased photodamage after prolonged exposure, consistent with red light syndrome.

Additional key words: Glycine max; photosystem II; quantum yields; quenching analysis; red light syndrome; relaxation analysis.

Received: July 17, 2025; Revised: September 10, 2025; Accepted: September 23, 2025; Prepublished online: October 20, 2025; Published: December 31, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
MARTÍNEZ-MORÉ, M., SIMONDI, S., SAINZ, M.M., BONNECARRÈRE, V., FERNÁNDEZ, S., & QUERO, G. (2025). Spectral light quality differentially modulates PSII energy partitioning among soybean genotypes. Photosynthetica63(4), 309-321. doi: 10.32615/ps.2025.029
Download citation

Supplementary files

Download fileMartinez-More_3212_supplement.docx

File size: 7.75 MB

References

  1. Ahn T.K., Avenson T.J., Peers G. et al.: Investigating energy partitioning during photosynthesis using an expanded quantum yield convention. - Chem. Phys. 357: 151-158, 2009. Go to original source...
  2. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  3. Bates D., Mächler M., Bolker B., Walker S.: Fitting linear mixed-effects models using lme4. - J. Stat. Softw. 67: 1-48, 2015. Go to original source...
  4. Broughton W.J., Dilworth M.J.: Control of leghaemoglobin synthesis in snake beans. - Biochem. J. 125: 1075-1080, 1971. Go to original source...
  5. Brown C.S., Schuerger A.C., Sager J.C.: Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. - J. Am. Soc. Hortic. Sci. 120: 808-813, 1995. Go to original source...
  6. Courbier S., Pierik R.: Canopy light quality modulates stress responses in plants. - iScience 22: 441-452, 2019. Go to original source...
  7. Demmig-Adams B., Adams III W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996. Go to original source...
  8. Demotes-Mainard S., Péron T., Corot A. et al.: Plant responses to red and far-red lights, applications in horticulture. - Environ. Exp. Bot. 121: 4-21, 2016. Go to original source...
  9. Devlin P.F., Christie J.M., Terry M.J.: Many hands make light work. - J. Exp. Bot. 58: 3071-3077, 2007. Go to original source...
  10. Didaran F., Kordrostami M., Ghasemi-Soloklui A.A. et al.: The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. - J. Photoch. Photobio. B 259: 113004, 2024. Go to original source...
  11. Dougher T.A., Bugbee B.: Long-term blue light effects on the histology of lettuce and soybean leaves and stems. - J. Am. Soc. Hortic. Sci. 29: 467-472, 2004. Go to original source...
  12. Fang L., Ma Z., Wang Q. et al.: Plant growth and photosynthetic characteristics of soybean seedlings under different LED lighting quality conditions. - J. Plant Growth Regul. 40: 668-678, 2021. Go to original source...
  13. Fehr W.R., Caviness C.E.: Stages of Soybean Development. Special Report 80. Pp. 12. Iowa Agricultural Experiment Station, Iowa State University, Ames 1977.
  14. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  15. Hamdani S., Khan N., Perveen S. et al.: Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. - Photosynth. Res. 139: 107-121, 2019. Go to original source...
  16. Hartman G.L., West E.D., Herman T.K.: Crops that feed the World 2. Soybean - worldwide production, use, and constraints caused by pathogens and pests. - Food Secur. 3: 5-17, 2011. Go to original source...
  17. Hendrickson L., Furbank R.T., Chow W.S.: A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. - Photosynth. Res. 82: 73-81, 2004. Go to original source...
  18. Hikosaka K., Kato M.C., Hirose T.: Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. - Physiol. Plantarum 121: 699-708, 2004. Go to original source...
  19. Hirai T., Amaki W., Watanabe H.: Action of blue or red monochromatic light on stem internodal growth depends on plant species. - Acta Hortic. 711: 345-350, 2006. Go to original source...
  20. Hitz T., Hartung J., Graeff-Hönninger S., Munz S.: Morphological response of soybean (Glycine max (L.) Merr.) cultivars to light intensity and red to far-red ratio. - Agronomy 9: 428, 2019. Go to original source...
  21. Hogewoning S.W., Douwstra P., Trouwborst G. et al.: An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. - J. Exp. Bot. 61: 1267-1276, 2010a. Go to original source...
  22. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. - J. Exp. Bot. 61: 3107-3117, 2010b. Go to original source...
  23. Huber M., Nieuwendijk N.M., Pantazopoulou C.K., Pierik R.: Light signalling shapes plant-plant interactions in dense canopies. - Plant Cell Environ. 44: 1014-1029, 2021. Go to original source...
  24. Kasajima I., Takahara K., Kawai-Yamada M.. Uchimiya H.: Estimation of the relative sizes of rate constants for chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. - Plant Cell Physiol. 50: 1600-1616, 2009. Go to original source...
  25. Kochetova G.V., Avercheva O.V., Bassarskaya E.M., Zhigalova T.V.: Light quality as a driver of photosynthetic apparatus development. - Biophys. Rev. 14: 779-803, 2022. Go to original source...
  26. Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. - Biol. Chem. 79: 209-218, 2004. Go to original source...
  27. Lazar D., Stirbet A., Björn L.O., Govindjee G.: Light quality, oxygenic photosynthesis and more. - Photosynthetica 60: 25-58, 2022. Go to original source...
  28. Lazár D.: Parameters of photosynthetic energy partitioning. - J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  29. Lenth R.V.: emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.10.0, 2024. Available at: https://CRAN.R-project.org/package=emmeans.
  30. Liu X.Y., Chang T.T., Guo S.R. et al.: Effect of different light quality of LED on growth and photosynthetic character in cherry tomato seedling. - Acta Hortic. 907: 325-330, 2011. Go to original source...
  31. Logan B.A., Demmig-Adams B., Adams III W.W., Bilger W.: Context, quantification, and measurement guide for non-photochemical quenching of chlorophyll fluorescence. - In: Demmig-Adams B., Garab G., Adams III W., Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Pp. 187-201. Vol. 40. Springer, Dordrecht 2014. Go to original source...
  32. Ma Z., Nian H., Luo S. et al.: Growth responses of soybean (Glycine max L.) seedlings as affected by monochromic or mixture radiation provided by light-emitting diode. - IFAC-PapersOnLine 51: 770-777, 2018. Go to original source...
  33. Matsuda R., Ohashi-Kaneko K., Fujiwara K. et al.: Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. - Plant Cell Physiol. 45: 1870-1874, 2004. Go to original source...
  34. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  35. Morgan D.C, O'Brien T., Smith H.: Rapid photomodulation of stem extension in light-grown Sinapis alba L. - Planta 150: 95-101, 1980. Go to original source...
  36. Nelson J.A., Bugbee B.: Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. - PLoS ONE 9: e99010, 2014. Go to original source...
  37. Nobel P.S.: Physicochemical and Environmental Plant Physiology. Fourth Edition. Pp. 604. Academic Press, Oxford 2009.
  38. Oguchi R., Douwstra P., Fujita T. et al.: Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. - New Phytol. 191: 146-159, 2011. Go to original source...
  39. Ohashi-Kaneko K., Matsuda R., Goto E. et al.: Growth of rice plants under red light with or without supplemental blue light. - Soil Sci. Plant Nutr. 52: 444-452, 2006. Go to original source...
  40. Oxborough K., Baker N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv'/Fm' without measuring Fo'. - Photosynth. Res. 54: 135-142, 1997. Go to original source...
  41. Quero G., Bonnecarrère V., Fernández S. et al.: Light-use efficiency and energy partitioning in rice is cultivar dependent. -Photosynth. Res. 140: 51-63, 2019. Go to original source...
  42. Quero G., Bonnecarrère V., Simondi S. et al.: Genetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach. - Photosynth. Res. 150: 97-115, 2021. Go to original source...
  43. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023. Available at: https://www.R-project.org/.
  44. Rueden C.T., Schindelin J., Hiner M.C. et al.: ImageJ2: ImageJ for the next generation of scientific image data. - BMC Bioinformatics 18: 529, 2017. Go to original source...
  45. Sena S., Kumari S., Kumar V., Husen A.: Light emitting diode (LED) lights for the improvement of plant performance and production: a comprehensive review. - Curr. Res. Biotechnol. 7: 100184, 2024. Go to original source...
  46. Skálová H., Krahulec F., During H.J. et al.: Grassland canopy composition and spatial heterogeneity in the light quality. - Plant Ecol. 143: 129-139, 1999. Go to original source...
  47. Stirbet A., Lazár D., Guo Y., Govindjee G.: Photosynthesis: basics, history and modelling. - Ann. Bot.-London 126: 511-537, 2020. Go to original source...
  48. Takemiya A., Inoue S.I., Doi M. et al.: Phototropins promote plant growth in response to blue light in low light environments. - Plant Cell 17: 1120-1127, 2005. Go to original source...
  49. Terashima I., Fujita T., Inoue T. et al.: Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. - Plant Cell Physiol. 50: 684-697, 2009. Go to original source...
  50. Trivellini A., Toscano S., Romano D., Ferrante A.: LED lighting to produce high-quality ornamental plants. - Plants-Basel 12: 1667, 2023. Go to original source...
  51. Trojak M., Skowron E., Sobala T. et al.: Effects of partial replacement of red by green light in the growth spectrum on photomorphogenesis and photosynthesis in tomato plants. - Photosynth. Res. 151: 295-312, 2022. Go to original source...
  52. Trouwborst G., Hogewoning S.W., van Kooten O. et al.: Plasticity of photosynthesis after the 'red light syndrome' in cucumber. -Environ. Exp. Bot. 121: 75-82, 2016. Go to original source...
  53. Vitale E., Velikova V., Tsonev T. et al.: The interplay between light quality and biostimulant application affects the antioxidant capacity and photosynthetic traits of soybean (Glycine max L. Merrill). - Plants-Basel 10: 861, 2021. Go to original source...
  54. Walter A., Schöbel H.: Shed light on photosynthetic organisms: a physical perspective to correct light measurements. - Photosynth. Res. 156: 325-336, 2023. Go to original source...
  55. Wang J., Lu W., Tong Y., Yang Q.: Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. - Front. Plant Sci. 7: 250, 2016. Go to original source...
  56. Yang L.Y., Wang L.T., Ma J.H. et al.: Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. - Photosynthetica 55: 467-477, 2017. Go to original source...
  57. Yorio N.C., Goins G.D., Kagie H.R. et al.: Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. - HortScience 36: 380-383, 2001. Go to original source...
  58. Yudina L., Sukhova E., Mudrilov M. et al.: Ratio of intensities of blue and red light at cultivation influences photosynthetic light reactions, respiration, growth, and reflectance indices in lettuce. - Biology 11: 60, 2022. Go to original source...
  59. Zavafer A.: A theoretical framework of the hybrid mechanism of photosystem II photodamage. - Photosynth. Res. 149: 107-120, 2021. Go to original source...
  60. Zavafer A., Cheah M.H., Hillier W. et al.: Photodamage to the oxygen evolving complex of photosystem II by visible light. - Sci. Rep.-UK 5: 16363, 2015a. Go to original source...
  61. Zavafer A., Chow W.S., Cheah M.H.: The action spectrum of Photosystem II photoinactivation in visible light. - J. Photoch. Photobio. B 152: 247-260, 2015b. Go to original source...
  62. Zhang M., Liu S., Wang Z. et al.: Progress in soybean functional genomics over the past decade. - Plant Biotechnol. J. 20: 256-282, 2022. Go to original source...
  63. Zhang Y., Kaiser E., Zhang Y. et al.: Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). -Physiol. Plantarum 167: 144-158, 2019. Go to original source...
  64. Zheng L., Van Labeke M.-C.: Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. - Front. Plant Sci. 8: 917, 2017. Go to original source...
  65. Zheng L., Van Labeke M.-C.: Effects of different irradiation levels of light quality on Chrysanthemum. - Sci. Hortic.-Amsterdam 233: 124-131, 2018. Go to original source...