Photosynthetica 2025,63(4):359-373 | DOI: 10.32615/ps.2025.037
Recent advances in plant stress analysis using chlorophyll a fluorescence
- 1 Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, China
- 2 International Joint Research Center for Intelligent Optical Sensing and Applications, Jiangnan University, Wuxi, China
- 3 School of Electrical Engineering and Automation, Suzhou University of Technology, Suzhou, China
- 4 Department of Chemical & Biomedical Engineering, University of Missouri, Columbia, MO, USA
- 5 Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
Chlorophyll fluorescence (ChlF), a sensitive, real-time, and nondestructive indicator of photosynthesis, enables noninvasive elucidation of the complex physiological and biochemical processes of plants. It plays a unique and important role in plant research, ecological evaluation, and agriculture. To provide a holistic picture of research on ChlF applications over the past decade, a knowledge map was first conducted, which revealed six major areas of ChlF applications in plant stress evaluation and reduction, including drought stress, temperature stress, salt stress, water stress, toxicity stress, and nitrogen stress. This work then systematically summarized the literature in each of the six areas. Finally, we examined practical application bottlenecks and outlined key challenges and frontiers in future ChlF research.
Additional key words: chlorophyll fluorescence; knowledge mapping; noninvasive detection; photosynthesis; plant stresses.
Received: September 12, 2025; Revised: December 1, 2025; Accepted: December 15, 2025; Prepublished online: December 29, 2025; Published: December 31, 2025 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Athar H.-u.-R., Zafar Z.U., Ashraf M.: Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. - J. Agron. Crop Sci. 201: 428-442, 2015.
Go to original source... - Azam F.I., Chang X., Jing R.: Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. - Euphytica 202: 245-258, 2015.
Go to original source... - Badr A., Brüggemann W.: Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. - Photosynthetica 58: 638-645, 2020.
Go to original source... - Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008.
Go to original source... - Bano H., Athar H.-u.-R., Zafar Z.U. et al.: Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. - Physiol. Plantarum 172: 1244-1254, 2021.
Go to original source... - Barborièová M., Filaèek A., Mlynáriková Vysoká D. et al.: Sensitivity of fast chlorophyll fluorescence parameters to combined heat and drought stress in wheat genotypes. - Plant Soil Environ. 68: 309-316, 2022.
Go to original source... - Bayçu G., Gevrek-Kürüm N., Moustaka J. et al.: Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. - Environ. Sci. Pollut. R. 24: 2840-2850, 2017.
Go to original source... - Bresson J., Vasseur F., Dauzat M. et al.: Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. - Plant Methods 11: 23, 2015.
Go to original source... - Bu M., Li Y., Wang S. et al.: Nitrogen stress alters trade-off strategies between reproduction and vegetative growth in soybean. - Braz. J. Bot. 46: 269-279, 2023.
Go to original source... - Cen H., Jiang J., Han G. et al.: Applying deep learning in the prediction of chlorophyll-a in the East China Sea. - Remote Sens. 14: 5461, 2022.
Go to original source... - Cen H.Y., Weng H.Y., Yao J.N. et al.: Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus Huanglongbing. - Front. Plant Sci. 8: 1509, 2017.
Go to original source... - Chen K., Ma T., Ding J. et al.: Effects of straw return with nitrogen fertilizer reduction on rice (Oryza sativa L.) morphology, photosynthetic capacity, yield and water-nitrogen use efficiency traits under different water regimes. - Agronomy 13: 133, 2022.
Go to original source... - Chen Y.-E., Liu W.-J., Su Y.-Q. et al.: Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. - Physiol. Plantarum 158: 225-235, 2016.
Go to original source... - Chowaniec K., ¯ukowska-Trebunia A., Rola K.: Combined effect of acute salt and nitrogen stress on the physiology of lichen symbiotic partners. - Environ. Sci. Pollut. R. 30: 28192-28205, 2023.
Go to original source... - D±browski P., Baczewska A.H., Pawlu¶kiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016.
Go to original source... - D±browski P., Baczewska-D±browska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors 19: 2736, 2019.
Go to original source... - D±browski P., Je³owicki £., Jaszczuk Z.M. et al.: Photosynthetic performance and yield losses of winter rapeseed (Brassica napus L. var. napus) caused by simulated hail. - Plants-Basel 13: 1785, 2024.
Go to original source... - D±browski P., Keutgen A.J., Keutgen N. et al.: Photosynthetic efficiency of perennial ryegrass (Lolium perenne L.) seedlings in response to Ni and Cd stress. - Sci. Rep.-UK 13: 5357, 2023.
Go to original source... - Das A., Pal M., Taria S. et al.: Multivariate analysis and genome wide association mapping for chlorophyll fluorescence and grain number per panicle under high temperature stress in rice. - Plant Physiol. Rep. 29: 598-613, 2024.
Go to original source... - Deng Y., Xin N., Zhao L. et al.: Precision detection of salt stress in soybean seedlings based on deep learning and chlorophyll fluorescence imaging. - Plants-Basel 13: 2089, 2024.
Go to original source... - Doğru A.: Effects of heat stress on photosystem II activity and antioxidant enzymes in two maize cultivars. - Planta 253: 85, 2021.
- Enyew M., Carlsson A.S., Geleta M. et al.: Novel sources of drought tolerance in sorghum landraces revealed via the analyses of genotype-by-environment interactions. - Front. Plant Sci. 13: 1062984, 2022.
Go to original source... - Esser-Skala W., Fortelny N.: Reliable interpretability of biology-inspired deep neural networks. - npj Syst. Biol. Appl. 9: 50, 2023.
Go to original source... - Fang X., Wang K., Sun X. et al.: Characteristics of chlorophyll fluorescence in ten garden shrub species under flooding stress. - Biologia 77: 339-350, 2022.
Go to original source... - Faseela P., Sinisha A.K., Brestiè M., Puthur J.T.: Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. - Photosynthetica 58: 293-300, 2020.
Go to original source... - Gan T., Zhao N., Yin G. et al.: Construction of a new response index for sensitive detection of the toxicity of photosynthetic inhibitory herbicides to photosynthesis of Chlorella pyrenoidosa based on change characteristics of chlorophyll fluorescence rise kinetics curve. - Pol. J. Environ. Stud. 32: 2589-2600, 2023.
Go to original source... - Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989.
Go to original source... - Ghassemi-Golezani K., Lotfi R.: The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. - Russ. J. Plant Physiol. 62: 611-616, 2015.
Go to original source... - Gill T., Gill S.K., Saini D.K. et al.: A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. - Phenomics 2: 156-183, 2022.
Go to original source... - Grasso G., Cocco G., Zane D. et al.: Microalgae-based fluorimetric bioassays for studying interferences on photosynthesis induced by environmentally relevant concentrations of the herbicide diuron. - Biosensors 12: 67, 2022.
Go to original source... - Grishina A., Sherstneva O., Mysyagin S. et al.: Detecting plant infections: prospects for chlorophyll fluorescence imaging. - Agronomy 14: 2600, 2024.
Go to original source... - Guidi L., Lo Piccolo E., Landi M.: Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? - Front. Plant Sci. 10: 174, 2019.
Go to original source... - Guo Y., Tan J.L.: Kinetic Monte Carlo simulation of the initial phases of chlorophyll fluorescence from photosystem II. - Biosystems 115: 1-4, 2014.
Go to original source... - Guo Y., Tan J.L.: Recent advances in the application of chlorophyll a fluorescence from photosystem II. - Photochem. Photobiol. 91: 1-14, 2015.
Go to original source... - Gururani M.A., Venkatesh J., Ganesan M. et al.: In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. - PLoS ONE 10: e0127200, 2015.
Go to original source... - Hájek J., Barták M., Hazdrová J., Forbelská M.: Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence. - Cryobiology 73: 329-334, 2016.
Go to original source... - Harbinson J.: Improving the accuracy of chlorophyll fluorescence measurements. - Plant Cell Environ. 36: 1751-1754, 2013.
Go to original source... - Hassannejad S., Lotfi R., Ghafarbi S.P. et al.: Early identification of herbicide modes of action by the use of chlorophyll fluorescence measurements. - Plants-Basel 9: 529, 2020.
Go to original source... - Hu X., Liu S., Gu W. et al.: Exogenous brassinolide improves the low nitrogen tolerance of sorghum seedling by increasing the photosynthetic capacity. - S. Afr. J. Bot. 178: 89-100, 2025.
Go to original source... - Huang M., Ai H., Xu X. et al.: Nitric oxide alleviates toxicity of hexavalent chromium on tall fescue and improves performance of photosystem II. - Ecotox. Environ. Safe. 164: 32-40, 2018.
Go to original source... - Jain N., Singh G.P., Pandey R. et al.: Chlorophyll fluorescence kinetics and response of wheat (Triticum aestivum L.) under high temperature stress. - Indian J. Exp. Biol. 56: 194-201, 2018.
- Jedmowski C., Ashoub A., Momtaz O., Brüggemann W.: Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontaneum). -J. Bot. 2015: 120868, 2015.
Go to original source... - Ji S., Zhang Y., Xu M. et al.: Characterization of low-temperature sensitivity and chlorophyll fluorescence in yellow leaf mutants of tomato. - Agronomy 14: 2382, 2024.
Go to original source... - Jiang Y., Tan Y., Ji F. et al.: CFIHL: a variety of chlorophyll a fluorescence transient image datasets of hydroponic lettuce. - Front. Plant Sci. 15: 1414324, 2024.
Go to original source... - Kalaji H.M., Rastogi A., ®ivèák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018.
Go to original source... - Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016.
Go to original source... - Kalisz A., Jezdinský A., Pokluda R. et al.: Impacts of chilling on photosynthesis and chlorophyll pigment content in juvenile basil cultivars. - Hortic. Environ. Biote. 57: 330-339, 2016.
Go to original source... - Kalisz A., Korna¶ A., Skoczowski A. et al.: Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles. - BMC Plant Biol. 23: 329, 2023.
Go to original source... - Kautsky H., Hirsch A.: Neue versuche zur Kohlensäureassimilation. - Naturwissenschaften 19: 964, 1931. [In German]
Go to original source... - Keller J., Geier U., Tran N.T.: In-depth analysis of chlorophyll fluorescence rise kinetics reveals interference effects of a radiofrequency electromagnetic field (RF-EMF) on plant hormetic responses to drought stress. - Int. J. Mol. Sci. 26: 7038, 2025.
Go to original source... - Khatibi S.M.H., Ali J.: Harnessing the power of machine learning for crop improvement and sustainable production. - Front. Plant Sci. 15: 1417912, 2024.
Go to original source... - Killi D., Raschi A., Bussotti F.: Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. - Int. J. Mol. Sci. 21: 4846, 2020.
Go to original source... - Kong X., Wang R., Jia P. et al.: Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.). - Plant Mol. Biol. 115: 19, 2025.
Go to original source... - Legendre R., Basinger N.T., van Iersel M.W.: Low-cost chlorophyll fluorescence imaging for stress detection. - Sensors 21: 2055, 2021.
Go to original source... - Li S., Rao L.: Response of growth and chlorophyll fluorescence parameters of mulberry seedlings to waterlogging stress. - Sci. Rep.-UK 14: 25078, 2024.
Go to original source... - Li X., Riaz M., Song B., Liu H.: Phytotoxicity response of sugar beet (Beta vulgaris L.) seedlings to herbicide fomesafen in soil. - Ecotox. Environ. Safe. 239: 113628, 2022.
Go to original source... - Li Z.J., Ji W., Hong E. et al.: Study on heat resistance of peony using photosynthetic indexes and rapid fluorescence kinetics. -Horticulturae 9: 100, 2023.
Go to original source... - Lin H.-H., Lin K.-H., Huang M.-Y., Su Y.-R.: Use of non-destructive measurements to identify cucurbit species (Cucurbita maxima and Cucurbita moschata) tolerant to waterlogged conditions. - Plants-Basel 9: 1226, 2020.
Go to original source... - Lin Z.-H., Zhong Q.-S., Chen C.-S. et al.: Carbon dioxide assimilation and photosynthetic electron transport of tea leaves under nitrogen deficiency. - Bot. Stud. 57: 37, 2016.
Go to original source... - Liu S., Sun B., Cao B. et al.: Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger (Zingiber officinale). - Protoplasma 260: 405-418, 2023.
Go to original source... - Long Y., Ma M.: Recognition of drought stress state of tomato seedling based on chlorophyll fluorescence imaging. - IEEE Access 10: 48633-48642, 2022.
Go to original source... - Lotfi R., Eslami-Senoukesh F., Mohammadzadeh A. et al.: Identification of key chlorophyll fluorescence parameters as biomarkers for dryland wheat under future climate conditions. - Sci. Rep.-UK 14: 28699, 2024.
Go to original source... - Loudari A., Benadis C., Naciri R. et al.: Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. - J. Plant Interact. 15: 398-405, 2020.
Go to original source... - Lu M., Gao P., Hu J. et al.: A classification method of stress in plants using unsupervised learning algorithm and chlorophyll fluorescence technology. - Front. Plant Sci. 14: 1202092, 2023.
Go to original source... - Lu Y.Z., Lu R.F.: Enhancing chlorophyll fluorescence imaging under structured illumination with automatic vignetting correction for detection of chilling injury in cucumbers. - Comput. Electron. Agr. 168: 105145, 2020.
Go to original source... - Lukatkin A.S., Semenova A.S., Teixeira da Silva J.A.: Treatment of winter rye (Secale cereale L.) seeds with thidiazuron mitigates the toxic response of seedlings to short-term treatment with a herbicide, paraquat. - Acta Physiol. Plant. 45: 78, 2023.
Go to original source... - Lysenko V., Rajput V.D., Singh R.K. et al.: Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives. - Physiol. Mol. Biol. Plants 28: 2041-2056, 2022.
Go to original source... - Ma L., Liu X., Lv W., Yang Y.: Molecular mechanisms of plant responses to salt stress. - Front. Plant Sci. 13: 934877, 2022.
Go to original source... - Malekzadeh M.R., Roosta H.R., Esmaeilizadeh M. et al.: Improving strawberry plant resilience to salinity and alkalinity through the use of diverse spectra of supplemental lighting. - BMC Plant Biol. 24: 252, 2024.
Go to original source... - Manghwar H., Hussain A., Alam I. et al.: Waterlogging stress in plants: unraveling the mechanisms and impacts on growth, development, and productivity. - Environ. Exp. Bot. 224: 105824, 2024.
Go to original source... - Mao L., Mishra D.R., Hawman P.A. et al.: Photosynthetic performance of tidally flooded Spartina alterniflora salt marshes. - J. Geophys. Res.-Biogeo. 128: e2022JG007161, 2023.
Go to original source... - Markou G., Dao L.H.T., Muylaert K., Beardall J.: Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. - Algal Res. 26: 84-92, 2017.
Go to original source... - Masseroni D., Ortuani B., Corti M. et al.: Assessing the reliability of thermal and optical imaging techniques for detecting crop water status under different nitrogen levels. - Sustainability 9: 1548, 2017.
Go to original source... - Mathur S., Seo B., Jajoo A. et al.: Chlorophyll fluorescence is a potential indicator to measure photochemical efficiency in early to late soybean maturity groups under changing day lengths and temperatures. - Front. Plant Sci. 14: 1228464, 2023.
Go to original source... - Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000.
Go to original source... - McAusland L., Atkinson J.A., Lawson T., Murchie E.H.: High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. - Plant Methods 15: 109, 2019.
Go to original source... - Meng L.L., Song J.F., Wen J. et al.: Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. - Photosynthetica 54: 414-421, 2016.
Go to original source... - Mikulka J., Sen M.K., Ko¹narová P. et al.: Molecular mechanisms of resistance against PSII-inhibiting herbicides in Amaranthus retroflexus from the Czech Republic. - Genes 15: 904, 2024.
Go to original source... - Mostafa S., Mondal D., Panjvani K. et al.: Explainable deep learning in plant phenotyping. - Front. Artif. Intell. 6: 1203546, 2023.
Go to original source... - Moustaka J., Moustakas M.: Early-stage detection of biotic and abiotic stress on plants by chlorophyll fluorescence imaging analysis. - Biosensors 13: 796, 2023.
Go to original source... - Moustakas M., Calatayud Á., Guidi L.: Chlorophyll fluorescence imaging analysis in biotic and abiotic stress. - Front. Plant Sci. 12: 658500, 2021.
Go to original source... - Muhammad I., Shalmani A., Ali M. et al.: Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. - Front. Plant Sci. 11: 615942, 2021.
Go to original source... - Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013.
Go to original source... - Najar R., Aydi S., Sassi-Aydi S. et al.: Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. - Plant Biosyst. 153: 88-97, 2019.
Go to original source... - Nawaz M., Sun J.F., Shabbir S. et al.: A review of plants strategies to resist biotic and abiotic environmental stressors. - Sci. Total Environ. 900: 165832, 2023.
Go to original source... - Noga A., Warcho³ M., Czyczy³o-Mysza I. et al.: Chlorophyll a fluorescence parameters in the evaluation of oat DH lines yield components. - Cereal Res. Commun. 45: 665-674, 2017.
Go to original source... - Pathak V.M., Verma V.K., Rawat B.S. et al.: Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: a comprehensive review. - Front. Microbiol. 13: 962619, 2022.
Go to original source... - Paunov M., Koleva L., Vassilev A. et al.: Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. - Int. J. Mol. Sci. 19: 787, 2018.
Go to original source... - Qi Z., Xu C., Tang R. et al.: Response of photosynthesis and chlorophyll fluorescence to nitrogen changes in rice with different nitrogen use efficiencies. - Plants-Basel 14: 1465, 2025.
Go to original source... - Sánchez-Moreiras A.M., Graña E., Reigosa M.J., Araniti F.: Imaging of chlorophyll a fluorescence in natural compound-induced stress detection. - Front. Plant Sci. 11: 583590, 2020.
Go to original source... - Sayyad-Amin P., Jahansooz M.-R., Borzouei A., Ajili F.: Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. - J. Biol. Phys. 42: 601-620, 2016.
Go to original source... - Sharma S., Bhatt U., Sharma J. et al.: Effect of different waterlogging periods on biochemistry, growth, and chlorophyll a fluorescence of Arachis hypogaea L. - Front. Plant Sci. 13: 1006258, 2022.
Go to original source... - Singh H., Kumar D., Soni V.: Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. - Sci. Rep.-UK 12: 10620, 2022.
Go to original source... - Sommer S.G., Han E., Li X. et al.: The chlorophyll fluorescence parameter Fv/Fm correlates with loss of grain yield after severe drought in three wheat genotypes grown at two CO2 concentrations. - Plants-Basel 12: 436, 2023.
Go to original source... - Stefanov M.A., Rashkov G.D., Apostolova E.L.: Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P700 absorbance in C3 and C4 plants under physiological conditions and under salt stress. - Int. J. Mol. Sci. 23: 3768, 2022.
Go to original source... - Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018.
Go to original source... - Tantray A.Y., Bashir S.S., Ahmad A.: Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. - Physiol. Mol. Biol. Plants 26: 83-94, 2020.
Go to original source... - Tran N.T.: Anomaly detection utilizing one-class classification -a machine learning approach for the analysis of plant fast fluorescence kinetics. - Stresses 4: 773-786, 2024.
Go to original source... - Tseng Y.-C., Chu S.-W.: High spatio-temporal-resolution detection of chlorophyll fluorescence dynamics from a single chloroplast with confocal imaging fluorometer. - Plant Methods 13: 43, 2017.
Go to original source... - Urban L., Aarrouf J., Bidel L.P.R.: Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. - Front. Plant Sci. 8: 2068, 2017.
Go to original source... - Viljevac Vuletiæ M., Mihaljeviæ I., Toma¹ V. et al.: Physiological response to short-term heat stress in the leaves of traditional and modern plum (Prunus domestica L.) cultivars. - Horticulturae 8: 72, 2022.
Go to original source... - Waheed A., Zhuo L., Wang M.H. et al.: Integrative mechanisms of plant salt tolerance: biological pathways, phytohormonal regulation, and technological innovations. - Plant Stress 14: 100652, 2024.
Go to original source... - Wang J., Wang H., Lv X. et al.: Estimating photosynthetic characteristics of forage rape by fusing the sensitive spectral bands to combined stresses of nitrogen and salt. - Front. Plant Sci. 16: 1547832, 2025b.
Go to original source... - Wang J., Wang Y., Jin H. et al.: Research progress on responses and regulatory mechanisms of plants under high temperature. -Curr. Issues Mol. Biol. 47: 601, 2025a.
Go to original source... - Wang L., Xie M., Pan M. et al.: Improved deep learning predictions for chlorophyll fluorescence based on decomposition algorithms: the importance of data preprocessing. - Water 15: 4104, 2023.
Go to original source... - Wu X.L., Tang Y.L., Li C.S. et al.: Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. - Plant Prod. Sci. 18: 284-294, 2015.
Go to original source... - Wu Y., Ma Q., Zhen Z. et al.: The effect of short-term waterlogging stress on the response mechanism of photosynthetic characteristics, chlorophyll fluorescence, and yield components during the podding stage in peanuts. - Agronomy 14: 2232, 2024.
Go to original source... - Xia Q., Fu L., Tang H. et al.: Sensing and classification of rice (Oryza sativa L.) drought stress levels based on chlorophyll fluorescence. - Photosynthetica 60: 102-109, 2022.
Go to original source... - Xia Q., Tang H., Fu L. et al.: A drought stress-sensing technique based on wavelet entropy of chlorophyll fluorescence excited with pseudo-random binary sequence. - Comput. Electron. Agr. 210: 107933, 2023.
Go to original source... - Xia Q., Tang H., Tan J.L. et al.: Determination of rice (Oryza sativa L.) drought stress levels based on chlorophyll a fluorescence through independent component analysis. - Photosynthetica 63: 73-80, 2025.
Go to original source... - Zhang F., Zhu K., Wang Y.Q. et al.: Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. - Photosynthetica 57: 1156-1164, 2019.
Go to original source... - Zhang Z., Cao B., Chen Z., Xu K.: Grafting enhances the photosynthesis and nitrogen absorption of tomato plants under low-nitrogen stress. - J. Plant Growth Regul. 41: 1714-1725, 2022.
Go to original source... - Zhou L., Zhou L., Wu H. et al.: Application of chlorophyll fluorescence analysis technique in studying the response of lettuce (Lactuca sativa L.) to cadmium stress. - Sensors 24: 1501, 2024.
Go to original source... - Zhou R., Hyldgaard B., Yu X. et al.: Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. - Euphytica 214: 68, 2018b.
Go to original source... - Zhou R., Wu Z., Wang X. et al.: Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. - Hortic. Environ. Biote. 59: 499-509, 2018a.
Go to original source... - Zushi K., Matsuzoe N.: Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. - Sci. Hortic.-Amsterdam 219: 216-221, 2017.
Go to original source... - Table 8. Summary of ChlF applications in sensing nitrogen stress.




