Photosynthetica 2024, 62(2):204-208 | DOI: 10.32615/ps.2024.022

Revisiting the nonregulatory, constitutive nonphotochemical quenching of the absorbed light energy in oxygenic photosynthetic organisms

G. GARAB1, 2
1 Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári körút 62, 6726 Szeged, Hungary
2 Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic

The present paper aims to open discussion on the information content, physical mechanism(s), and measuring protocols to determine the partitioning of the absorbed light energy in oxygenic photosynthetic organisms. Revisiting these questions is incited by recent findings discovering that PSII, in addition to its open and closed state, assumes a light-adapted charge-separated state and that chlorophyll a fluorescence induction (ChlF), besides the photochemical activity of PSII, reflects the structural dynamics of its reaction center complex. Thus, the photochemical quantum yield of PSII cannot be determined from the conventional ChlF-based protocol. Consequently, the codependent quantity - the quantum yield of the so-called nonregulatory constitutive nonphotochemical quenching (npq) - loses its physical meaning. Processes beyond photochemistry and regulatory npq should be identified and characterized by multifaceted studies, including ChlF. Such investigations may shed light on the putative roles of dissipation and other energy-consuming events in the stress physiology of photosynthetic machinery.

Additional key words: chlorophyll a fluorescence; constitutive nonregulatory dissipation; Fv, Fm; nonphotochemical quenching; quantum yield; structural dynamics.

Received: March 19, 2024; Revised: May 7, 2024; Accepted: May 23, 2024; Prepublished online: May 27, 2024; Published: June 27, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GARAB, G. (2024). Revisiting the nonregulatory, constitutive nonphotochemical quenching of the absorbed light energy in oxygenic photosynthetic organisms. Photosynthetica62(2), 204-208. doi: 10.32615/ps.2024.022
Download citation

References

  1. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  2. Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 3rd Edition. Pp. 352. Wiley, Chichester 2021.
  3. Butler W.L.: Energy distribution in photochemical apparatus of photosynthesis. - Annu. Rev. Plant Physiol. 29: 345-378, 1978. Go to original source...
  4. Butler W.L., Strasser R.J.: Tripartite model for the photochemical apparatus of green plant photosynthesis. - PNAS 74: 3382-3385, 1977. Go to original source...
  5. Duysens L.N.M., Sweers H.E.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence. - In: Japanese Society of Plant Physiologists (ed.): Microalgae and Photosynthetic Bacteria. Pp. 353-372. University of Tokyo Press, Tokyo 1963.
  6. Garab G., Magyar M., Sipka G., Lambrev P.H.: New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. - J. Exp. Bot. 74: 5458-5471, 2023. Go to original source...
  7. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  8. Genty B., Harbinson J., Cailly A.L., Rizza F.: Fate of excitation at PS II in leaves: the nonphotochemical side. - In: The Third BBSRC Robert Hill Symposium on Photosynthesis. Abstract no. P28. University of Sheffield, Department of Molecular Biology and Biotechnology, Western Bank, Sheffield 1996.
  9. Gorbunov M.Y., Falkowski P.G.: Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world's oceans. - Annu. Rev. Mar. Sci. 14: 213-238, 2022. Go to original source...
  10. Govindjee G., Papageorgiou G.C.: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 818. Springer, Dordrecht 2004. Go to original source...
  11. Horton P.: Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. - Philos. T. Roy. Soc. B 367: 3455-3465, 2012. Go to original source...
  12. Joliot P., Joliot A.: Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. - BBA-Bioenergetics 546: 93-105, 1979. Go to original source...
  13. Kalaji H.M., Goltsev V.: Special issue in honour of Prof. Reto J. Strasser - Foreword. - Photosynthetica 58: 1-5, 2020. Go to original source...
  14. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  15. Keller B., Soto J., Steier A. et al.: Linking photosynthesis and yield reveals a strategy to improve light use efficiency in a climbing bean breeding population. - J. Exp. Bot. 75: 901-916, 2024. Go to original source...
  16. Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. - BBA-Bioenergetics 376: 105-115, 1975. Go to original source...
  17. Kono M., Miyata K., Matsuzawa S. et al.: Mixed population hypothesis of the active and inactive PSII complexes opens a new door for photoinhibition and fluorescence studies: an ecophysiological perspective. - Funct. Plant Biol. 49: 917-925, 2022. Go to original source...
  18. Kramer D.M., Avenson T.J., Edwards G.E.: Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. - Trends Plant Sci. 9: 349-357, 2004. Go to original source...
  19. Kuhlgert S., Austic G., Zegarac R. et al.: MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. - Royal Soc. Open Sci. 3: 160592, 2016. Go to original source...
  20. Laisk A., Oja V.: Variable fluorescence of closed photochemical reaction centers. - Photosynth. Res. 143: 335-346, 2020. Go to original source...
  21. Laisk A., Peterson R.B., Oja V.: Excitation transfer and quenching in photosystem II, enlightened by carotenoid triplet state in leaves. - Photosynth. Res. 160: 31-44, 2024. Go to original source...
  22. Lazár D.: Parameters of photosynthetic energy partitioning. - J. Plant Physiol. 175: 131-147, 2015. Go to original source...
  23. Lazár D., Niu Y.X., Nedbal L.: Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. - J. Exp. Bot. 73: 6380-6393, 2022. Go to original source...
  24. Magyar M., Akhtar P., Sipka G. et al.: Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. - Photosynthetica 60: 147-156, 2022. Go to original source...
  25. Magyar M., Sipka G., Han W.H. et al.: Characterization of the rate-limiting steps in the dark-to-light transitions of closed Photosystem II: Temperature dependence and invariance of waiting times during multiple light reactions. - Int. J. Mol. Sci. 24: 94, 2023. Go to original source...
  26. Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II - revealed by chlorophyll-a fluorescence induction. - Sci. Rep.-UK 8: 2755, 2018. Go to original source...
  27. Mattila H., Havurinne V., Antal T., Tyystjärvi E.: Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F0 rise method. - Photosynthetica 60: 529-538, 2022. Go to original source...
  28. Mattila H., Mishra S., Tyystjärvi T., Tyystjärvi E.: Singlet oxygen production by photosystem II is caused by misses of the oxygen evolving complex. - New Phytol. 237: 113-125, 2023. Go to original source...
  29. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  30. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  31. Oja V., Laisk A.: Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. - Photosynth. Res. 145: 209-225, 2020. Go to original source...
  32. Práąil O., Kolber Z.S., Falkowski P.G.: Control of the maximal chlorophyll fluorescence yield by the QB binding site. - Photosynthetica 56: 150-162, 2018. Go to original source...
  33. Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. - Photosynthetica 40: 13-29, 2002. Go to original source...
  34. Ruban A.V., Wilson S.: The mechanism of non-photochemical quenching in plants: localization and driving forces. - Plant Cell Physiol. 62: 1063-1072, 2021. Go to original source...
  35. Santabarbara S., Monteleone F.V., Remelli W. et al.: Comparative excitation-emission dependence of the ratio in model green algae and cyanobacterial strains. - Physiol. Plantarum 166: 351-364, 2019. Go to original source...
  36. Schreiber U., Klughammer C., Kolbowski J.: Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. - Photosynth. Res. 113: 127-144, 2012. Go to original source...
  37. Shevela D., Kern J.F., Govindjee G., Messinger J.: Solar energy conversion by photosystem II: principles and structures. - Photosynth. Res. 156: 279-307, 2023. Go to original source...
  38. Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. - Plant Cell 33: 1286-1302, 2021. Go to original source...
  39. Sipka G., Müller P., Brettel K. et al.: Redox transients of P680 associated with the incremental chlorophyll a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. - Physiol. Plantarum 166: 22-32, 2019. Go to original source...
  40. Sipka G., Nagy L., Magyar M. et al.: Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. - Open Biol. 12: 220297, 2022. Go to original source...
  41. Stirbet A.: Excitonic connectivity between photosystem II units: what is it, and how to measure it? - Photosynth. Res. 116: 189-214, 2013. Go to original source...
  42. Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. - Photosynth. Res. 113: 15-61, 2012. Go to original source...
  43. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  44. Trtílek M., Kramer D.M., Koblíľek M., Nedbal L.: Dual-modulation LED kinetic fluorometer. - J. Lumin. 72-74: 597-599, 1997. Go to original source...
  45. Vass I., Cser K.: Janus-faced charge recombinations in photosystem II photoinhibition. - Trends Plant Sci. 14: 200-205, 2009. Go to original source...
  46. Vredenberg W.J.: Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. - Photosynth. Res. 96: 83-97, 2008. Go to original source...
  47. Wientjes E., van Amerongen H., Croce R.: Quantum yield of charge separation in Photosystem II: functional effect of changes in the antenna size upon light acclimation. - J. Phys. Chem. B 117: 11200-11208, 2013. Go to original source...