Photosynthetica 2019, 57(1):342-349 | DOI: 10.32615/ps.2019.035

Comprehensive effects of exogenous salicylic acid and light on chlorophyll fluorescence parameters and photosynthetic oxygen evolution in Ulva prolifera

P.L. ZHUO1,2, Y.H. LI1,2, J.L. ZHONG1,2, M.S. ZHENG1,2, W.R. ZHU3, N.J. XU1,2
1 School of Marine Sciences, Ningbo University, Ningbo 315211, China
2 Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo 315211, China
3 Xiangshan Xuwen Seaweed Development Co. Ltd, Ningbo 315000, China

Ulva prolifera is one of the causative species of green tides. Salicylic acid (SA) alleviated the high-temperature damage by up-regulating a portion of antioxidant-related proteins, however, little is understood regarding the impacts of SA under high light in this species. In order to study the regulation effects of SA on U. prolifera under different light conditions, we grew this species under three SA concentrations (0, 2.5, 5.0 µg mL-1) and three light levels [high light (HL): 400 μmol(photon) m-2 s-1, medium light (ML): 160 μmol(photon) m-2 s-1, and low light (LL): 70 μmol(photon) m-2 s-1]. After 3 d, the growth, chlorophyll fluorescence parameters, photosynthetic oxygen rate production, and superoxide dismutase (SOD) activity of U. prolifera were investigated. We found that: (1) The relative growth rate (RGR) of U. prolifera increased with the increase of light, no matter if with or without SA; under the three light levels, the highest RGR was observed in the presence of 2.5 µg(SA) mL-1. (2) U. prolifera grown under HL conditions showed the highest values in nonphotochemical quenching and total content of cartenoids. (3) Under three light levels, the dark respiration rate, the net, maximal, and gross photosynthetic oxygen rate significantly decreased by SA. (4) The highest value of SOD activity was observed under LL in the presence of SA (5.0 µg mL-1). In conclusion, the effects of light on the physiology in U. prolifera could be mediated by SA in a concentration-dependent manner.

Additional key words: light intensity; photosynthesis; salicylic acid.

Received: January 10, 2018; Accepted: September 12, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZHUO, P.L., LI, Y.H., ZHONG, J.L., ZHENG, M.S., ZHU, W.R., & XU, N.J. (2019). Comprehensive effects of exogenous salicylic acid and light on chlorophyll fluorescence parameters and photosynthetic oxygen evolution in Ulva prolifera. Photosynthetica57(1), 342-349. doi: 10.32615/ps.2019.035
Download citation

Supplementary files

Download file1881 Table 1S.docx

File size: 13.65 kB

References

  1. Al-Hafedh Y.S., Alam A., Buschmann A.H.: Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates. - Rev. Aquacult. 7: 161-171, 2015. Go to original source...
  2. Anderson J.M., Goodchild D.J., Boardman N.K.: Composition of the photosystems and chloroplast structure in extreme shade plants. - Biochim. Biophys. Acta 325: 573-585, 1973. Go to original source...
  3. Chen B.B., Zou D.H., Ma J.H.: Interactive effects of elevated CO2 and nitrogen-phosphorus supply on the physiological properties of Pyropia haitanensis (Bangiales, Rhodophyta). - J. Appl. Phycol. 28: 1235-1243, 2016. Go to original source...
  4. Chen H.J., Hou W.C., Kuć J., Lin Y.H.: Ca2+-dependent and Ca2+- independent excretion modes of salicylic acid in tobacco cell suspension culture. - J. Exp. Bot. 52: 1219-1226, 2001. Go to original source...
  5. Chen H.J., Kuc J.: Ca2+-dependent excretion of salicylic acid in tobacco cell suspension culture. - Botanic. Bul. Acad. Sinica 40: 267-273,1999.
  6. Czerpak R., Bajguz A., Gromek M.: Activity of salicylic acid on the growth and biochemism of Chlorella vulgaris Beijerinck. - Acta Physiol. Plant. 24: 45-52, 2002. Go to original source...
  7. Eilers P.H.C., Peeters J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. - Ecol. Model. 42: 199-215, 1998. Go to original source...
  8. Fan M.H., Sun X., Xu N.J. et al.: cDNA cloning, characterization and expression analysis of manganese superoxide dismutase in Ulva prolifera. - J. Appl. Phycol. 28: 1391-1401, 2016 Go to original source...
  9. Fan M.H., Sun X., Xu N.J. et al.: Integration of deep transcriptome and proteome analyses of salicylic acid regulation high temperature tress in Ulva prolifera. - Sci. Rep. 7: 11052, 2017. Go to original source...
  10. Gao G., Clare A.S., Rose C. et al.: Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. - Mar. Pollut. Bull. 114: 439-447, 2017. Go to original source...
  11. Giannopolitis C.N., Ries S.K.: Superoxide dismutases I. Occur-rence in higher plants. - Plant Physiol. 59: 309-314, 1977. Go to original source...
  12. Guan Z., Mou S.L., Zhang X.W. et al.: Identification and expression analysis of four light harvesting-like (Lhc) genes associated with light and desiccation stress in Ulva linza. - J. Exp. Mar. Biol. Ecol. 478: 10-15, 2016. Go to original source...
  13. Guillard R.R.L., Ryther J.H.: Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and Detonula confervacea (CLEVE) Gran. - Can. J. Microbiol. 8: 229-239, 1962. Go to original source...
  14. Hayat Q., Hayat S., Irfan M. et al.: Effect of exogenous salicylic acid under changing environment: A review. - Environ. Exp. Bot. 68: 14-25, 2010. Go to original source...
  15. Han T., Han Y.S., Kim K.Y. et al.: Influences of light and UV-B on growth and sporulation of the green alga Ulva pertusa Kjellman. - J. Exp. Mar. Biol. Ecol. 290: 115-131, 2003. Go to original source...
  16. Henley W.J.: Measurment and interpretation of photosynthetic light-response curves algae in the context of photoinhibition and diel changes. - J. Phycol. 29: 729-739, 1993. Go to original source...
  17. Hsu Y.T., Lee T.M.: Modulation of gene expression of carotene biosynthesis-related protein by photosynthetic electron transport for the acclimation of intertidal macroalga Ulva fasciata to hypersalinity and excess light. - Physiol. Plantarum 144: 225-237, 2012. Go to original source...
  18. Janda T., Gondor O.K., Yordanova R. et al.: Salicylic acid and photosynthesis: signalling and effects. - Acta Physiol. Plant. 36: 2537-2546, 2014. Go to original source...
  19. Kawano T., Furuichi T., Muto S.: Controlled free salicylic acid levels and corresponding signaling mechanisms in plants. - Plant Biotechnol. 21: 319-335, 2004. Go to original source...
  20. Kochert G.: Protein determination by dye binding. - In: Hellebust J.A., Craigie J.S. (ed.): Handbook of Phycological Methods: Physiological and Biochemical Methods. Pp. 91-93. Cambridge University Press, Cambridge 1978.
  21. Lee J.S.: The mechanism of stomatal closing by salicylic acid in Commelina communis L. - J. Plant Biol. 41: 97-102, 1998. Go to original source...
  22. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. - Biochem. Soc. Trans. 11: 591-592, 1983. Go to original source...
  23. Luo M.B., Liu F.: Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. - J. Exp. Mar. Biol. Ecol. 409: 223-228, 2011 Go to original source...
  24. Michalak I., Chojnacka K.: Edible macroalga Ulva prolifera as microelemental feed supplement for livestock: the fundamental assumptions of the production method. - World J Microbiol. Biotechnol. 25: 997-1005, 2009. Go to original source...
  25. McDonald M.S.: Photobiology of Higher Plants. Pp. 368. John Wiley & Sons, Hoboken, New Jersey 2003.
  26. Miura K., Tada Y.: Regulation of water, salinity, and cold stress responses by salicylic acid. - Front. Plant Sci. 5: 4, 2014. Go to original source...
  27. Mou S., Zhang X., Dong M. et al.: Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress. - Plant Biol. 15: 1033-1039, 2013. Go to original source...
  28. Pancheva T.V., Popova L.P., Uzunova A.N. et al.: Effects of salicylic acid on growth and photosynthesis in barley plants. - J. Plant Physiol. 149: 57-63, 1996. Go to original source...
  29. Pickering T.D., Gordon M.E., Tong L.J.: Seasonal growth, density, reproductive phenology and agar quality of Gracilaria sordida (Gracilariales, Rhodophyta) at Molkomoko Inlet, New Zealand. - Hydrobiologia 204/205: 253-262, 1990. Go to original source...
  30. Poór P., Ördög A., Czékus Z. et al.: Regulation of the key antioxidant enzymes by developmetal processes and environmental stress in the dark. - Biol. Plantarum 62: 201-210,2018. Go to original source...
  31. Qi H., Huang L., Liu X. et al.: Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). - Carbohyd. Polym. 87: 1637-1640, 2012. Go to original source...
  32. Shakirova F.M., Sakhabutdinova A.R., Bezrukova M.V. et al.: Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. - Plant Sci. 164: 317-322, 2003. Go to original source...
  33. Souza J.M.C., Yokoya N.S.: Effects of cytokinins on physiological and biochemical responses of the agar-producing red alga Gracilaria caudata (Gracilariales, Rhodophyta). - J. Appl. Phycol. 28: 3491-3499, 2016. Go to original source...
  34. Uzunova A.N., Popova L.P.: Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. - Photosynthetica 38: 243-250, 2000. Go to original source...
  35. Vicente M.R.S., Plasencia J.: Salicylic acid beyond defence: its role in plant growth and development. - J. Exp. Bot. 62: 3321-3338, 2011. Go to original source...
  36. Wang Y., Qu T., Zhao X. et al.: A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence. - SpringerPlus 5: 775, 2016 Go to original source...
  37. Wang F.J., Wang C.B., Zou T.L. et al.: Comparative tran-scriptional profiling of Gracilariopsis lemaneiformis in response to salicylic acid- and methyl jasmonate-mediated heat resistance. - PLoS ONE 12: e0176531, 2017. Go to original source...
  38. Zhao J., Jiang P., Liu Z.Y. et al.: The Yellow Sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011. - Chin. Sci. Bull. 58: 2298-2302, 2013. Go to original source...
  39. Zhao X.Y., Tang X.X., Zhang H.X. et al.: Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes. - Plant Physiol. Bioch. 107: 116-125, 2016. Go to original source...
  40. Zhang X.W., Ye N.H., Mou S.L. et al.: Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure. - Plant Physiol. Bioch. 70: 336-341, 2013. Go to original source...
  41. Zhuo P.L., Zhong J.L., Wang D. et al.: Effect of exogenous salicylic acid and ultraviolet radiation on Ulva prolifera under different light conditions. - Chin. J. Appl. Ecol. 28: 1977-1983, 2017. [In Chinese]