Photosynthetica 2020, 58(SI):205-213 | DOI: 10.32615/ps.2019.132

Special issue in honour of Prof. Reto J. Strasser – Structural and functional response of photosynthetic apparatus of radish plants to iron deficiency

I.A. SAMBORSKA-SKUTNIK1, H.M. KALAJI1,2, L. SIECZKO3, W. BˇBA5
1 Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
2 White Hill Company, Ciołkowskiego 161, 15-545 Białystok, Poland
3 Department of Biometry, Institute of Agriculture, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
5 Institute for Ecology of Industrial Areas, Kossutha St. 6, 40-844 Katowice, Poland

In this work, we tried to identify some specific chlorophyll a fluorescence (ChlF) parameters, that could enable detection of iron deficiency (Fedef) in radish plants (Raphanus sativus L.), before any visual symptoms appear. Changes in ChlF kinetics, JIP-test parameters, and chlorophyll content revealed that iron deficiency negatively affected PSII activity mainly via disruption of light absorption in light-harvesting complexes and by decreasing the activity of the primary quinone acceptor of PSII (QA). Iron deficiency was clearly reflected in the changes of some JIP-test parameters, such as time to reach maximal fluorescence (FM), Area, normalized total area under the OJIP curve, and number of QA redox turnovers until FM is reached. The visible symptoms of Fedef appeared after 7 d of stress application, while ChlF measurements allowed us to detect iron deficiency during 1-3 d. Our results suggest that analysis of ChlF signals has a high potential for early detection of iron deficiency in radish plants.

Additional key words: nutrient deficiency; OJIP curves; photosynthetic efficiency; plant physiological status; principal component analysis.

Received: May 21, 2019; Accepted: September 23, 2019; Prepublished online: November 8, 2019; Published: May 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SAMBORSKA-SKUTNIK, I.A., KALAJI, H.M., SIECZKO, L., & BˇBA, W. (2020). Special issue in honour of Prof. Reto J. Strasser – Structural and functional response of photosynthetic apparatus of radish plants to iron deficiency. Photosynthetica58(SPECIAL ISSUE), 205-213. doi: 10.32615/ps.2019.132
Download citation

Supplementary files

Download fileSamborska-Skutnik 2297 supplement - Table 2S.docx

File size: 16.97 kB

Download fileSamborska-Skutnik 2297 supplement - Table 1S.docx

File size: 40.79 kB

References

  1. Abadía J.: Leaf responses to Fe deficiency: A review. - J. Plant Nutr. 15: 1699-1713, 1992. Go to original source...
  2. Allakhverdiev S.I.: Recent progress in the studies of structure and function of photosystem II. - J. Photoch. Photobio. B 104: 1-8, 2011. Go to original source...
  3. B±ba W., Kalaji H.M., Kompała-B±ba A., Goltsev V.: Acclimati-zation of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. - PLoS ONE 11: e0156201, 2016. Go to original source...
  4. Bąba W., Kompała-Bąba A., Zabochnicka-Swiątek M. et al.: Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. -Photosynthetica 57: 668-679, 2019. Go to original source...
  5. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  6. Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 2nd Edition. Pp. 312. Wiley-Blackwell, Chichester 2014.
  7. Briat J.F., Dubos C., Gaymard F.: Iron nutrition, biomass production, and plant product quality. - Trends Plant Sci. 20: 33-40, 2015. Go to original source...
  8. Cetner M., Kalaji H.M., Goltsev V. et al.: Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. - Plant Physiol. Bioch. 119: 81-92, 2017. Go to original source...
  9. Chen L., Ding C., Zhao X. et al.: Differential regulation of proteins in rice (Oryza sativa L.) under iron deficiency. - Plant Cell Rep. 34: 83-96, 2015. Go to original source...
  10. Connorton J.M., Balk J., Rodríguez-Celma J.: Iron homeostasis in plants - a brief overview. - Metallomics 9: 813-823, 2017. Go to original source...
  11. Finkelstein J.L., Haas J.D., Mehta S.: Iron-biofortified staple food crops for improving iron status: a review of the current evidence. - Curr. Opin. Biotech. 44: 138-145, 2017. Go to original source...
  12. Goltsev V., Zahariev I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. - BBA-Bioenergetics 1817: 1490-1498, 2012. Go to original source...
  13. Goltsev V.N, Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. - Russ. J. Plant Physl+ 63: 869-893, 2016. Go to original source...
  14. Hoagland D.R., Arnon D.I.: The Water-culture Method for Growing Plants without Soil. Pp. 31. College of Agriculture, University of California, Berkeley 1950.
  15. Kabata-Pendias A.: Trace elements in soils and plants. 4th Edition. Pp. 548. CRC Press, Boca Raton 2011. Go to original source...
  16. Kalaji H.M., B±ba W., Gediga K. et al.: Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. - Photosynth. Res. 136: 329-343, 2018. Go to original source...
  17. Kalaji H.M., D±browski P., Cetner M.D et al.: A comparison between different chlorophyll content meters under nutrient deficiency conditions. - J. Plant Nutr. 40: 1024-1034, 2017b. Go to original source...
  18. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  19. Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. - Plant Physiol. Bioch. 81: 16-25, 2014a. Go to original source...
  20. Kalaji H.M., Schansker G., Brestič M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. - Photosynth. Res. 132: 13-66, 2017a. Go to original source...
  21. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014b. Go to original source...
  22. Kautsky H., Hirsch A.: Neue Versuche zur Kohlensaure-assimilation. - Naturwissenschaften 19: 964-964, 1931. Go to original source...
  23. Kitashiba H., Li F., Hirakawa H. et al.: Draft sequences of the radish (Raphanus sativus L.) genome. - DNA Res. 21: 481-490, 2014. Go to original source...
  24. Kruk J., Szymańska R.: Singlet oxygen and non-photochemical quenching contribute to oxidation of the plastoquinone-pool under high light stress in Arabidopsis. - BBA-Bioenergetics 1817: 705-710, 2012. Go to original source...
  25. Mathur S., Kalaji H.M., Jajoo A.: Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. - Photosynthetica 54: 185-192, 2016. Go to original source...
  26. Mathur S., Sharma M.P, Jajoo A.: Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. - J. Photoch. Photobio. B 180: 149-154, 2018. Go to original source...
  27. Molassiotis A., Tanou G., Diamantidis G. et al.: Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. - J. Plant Physiol. 163: 176-185, 2006. Go to original source...
  28. M'sehli W., Houmani H., Donnini S. et al.: Iron deficiency tolerance at leaf level in Medicago ciliaris plants. - Am. J. Plant Sci. 5: 2541-2553, 2014. Go to original source...
  29. Reichard P.: From RNA to DNA, why so many ribonucleotide reductases? - Science 260: 1773-1777, 1993. Go to original source...
  30. Rout G.R., Sahoo S.: Role of iron in plant growth and metabo-lism. - Rev. Agr. Sci. 3: 1-24, 2015. Go to original source...
  31. Samborska I.A., Kalaji H.M., Sieczko L. et al.: Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. - Funct. Plant Biol. 45: 668-679, 2018. Go to original source...
  32. Samborska I.A., Kalaji H.M., Sieczko L. et al.: Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanus sativus L. sativus) plants? - Curr. Plant Biol. 19: 100096, 2019. Go to original source...
  33. Siedow J.N.: Plant lipoxygenase: Structure and function. - Annu. Rev. Plant Phys. 42: 145-188, 1991. Go to original source...
  34. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  35. Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. - Photosynth. Res. 113: 15-61, 2012. Go to original source...
  36. Stirbet A., Riznichenko G.Y., Rubin A.B., Govindjee: Modeling chlorophyll a fluorescence transient: Relation to photosyn-thesis. - Biochemistry-Moscow+ 79: 291-323, 2014. Go to original source...
  37. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores- cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 443-480. Taylor and Francis, London 2000.
  38. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  39. Terry N., Abadía J.: Function of iron in chloroplasts. - J. Plant Nutr. 9: 609-646, 1986. Go to original source...
  40. Tsimilli-Michael M., Strasser R.J.: Experimental resolution and theoretical complexity determine the amount of information extractable from the chlorophyll fluorescence transient OJIP. - Photosynth. Res. 91: 197, 2007. Go to original source...
  41. Tsimilli-Michael M., Strasser R.J.: The energy flux theory 35 years later: formulations and applications. - Photosynth. Res. 117: 289-320, 2013. Go to original source...
  42. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  43. ®ivčák M., Brestič M., Kalaji M.H., Govindjee: Photosynthetic responses of sun and shade grown barley leaves to high light: Is the lower PSII connectivity in shade leaves associated with protection against excess of light? - Photosynth. Res. 119: 339-354, 2014. Go to original source...
  44. Zuo Y.M., Zhang F.S.: Soil and crop management strategies to prevent iron deficiency in crops. - Plant Soil 339: 83-95, 2011. Go to original source...