Photosynthetica 2020, 58(3):790-798 | DOI: 10.32615/ps.2020.023

Photosynthetic CO2 response to soil water and its simulation using different models in leaves of two species

Q. WU1,2, T. ZHANG3, C.R. LI5,6, H.B. XIE4, G.C. ZHANG3
1 School of Art, Shangdong Jianzhu University, 250101 Jinan, China
2 Editorial Department of Journal, Shandong Jianzhu University, 250101 Jinan, China
3 Faculty of Forestry, Shandong Agricultural University, 271018 Tai'an, China
4 The Forestry Science and Technology Training Center of Shandong, 250013 Jinan, China
5 Taishan Forest Ecosystem Research Station, 271018 Tai'an, China
6 Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, 271018 Tai'an, China

CO2 concentrations and soil moisture conditions are important factors in photosynthesis of trees. This study investigated the photosynthetic CO2 responses in the leaves of Prunus sibirica L. and Pinus tabulaeformis Carr. under eight soil water conditions in a semiarid loess hilly region. CO2-response curves and physiological parameters were fitted using a rectangular hyperbola model, nonrectangular hyperbola model, exponential equation, and modified rectangular hyperbola model. Results revealed the relative soil water content (RWCs) for P. sibirica required to maintain higher photosynthetic rate ranging from 46.5 to 81.6%, and that for P. tabulaeformis ranging from 35.4 to 84.5%. When RWCs exceeded these ranges, the net photosynthetic rate of both species decreased. CO2-response curves and three parameters, carboxylation efficiency, CO2-compensation point, and photorespiration rate, were well fitted by the four models when RWCs was appropriate for P. sibirica and P. tabulaeformis. When RWCs exceeded the optimal ranges, only the modified rectangular hyperbola model could precisely simulate the CO2-response curves and photosynthetic parameters of both species.

Additional key words: CO2-response models; model simulation effect; photosynthetic CO2 response; tree species.

Received: November 19, 2019; Revised: February 17, 2020; Accepted: March 4, 2020; Prepublished online: May 15, 2020; Published: June 11, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
WU, Q., ZHANG, T., LI, C.R., XIE, H.B., & ZHANG, G.C. (2020). Photosynthetic CO2 response to soil water and its simulation using different models in leaves of two species. Photosynthetica58(3), 790-798. doi: 10.32615/ps.2020.023
Download citation

References

  1. Ali A.A., Xu C., Rogers A. et al.: A global scale mechanistic model of photosynthetic capacity (LUNAV1.0). - Geosci. Model Dev. 9: 587-606, 2016. Go to original source...
  2. Baly E.C.: The kinetics of photosynthesis. - P. Roy. Soc. Lond. B Bio. 117: 218-239, 1935. Go to original source...
  3. Bao H.: [Response growth characteristics of Prunus ansu from different provenances in seedling stage to drought stress.] - J. Inner Mong. For. Sci. Technol. 41: 5-8, 2015. [In Chinese]
  4. Bellasio C.: A generalised dynamic model of leaf-level C3 photosynthesis combining light and dark reactions with stomatal behaviour. - Photosynth. Res. 141: 99-118, 2019. Go to original source...
  5. Bellasio C., Quirk J., Beerling D.J.: Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. - Plant Sci. 274: 181-192, 2018. Go to original source...
  6. Bernacchi C.J., Bagley J.E., Serbin S.P. et al.: Modelling C3 photosynthesis from the chloroplast to the ecosystem. - Plant Cell Environ. 36: 1641-1657, 2013. Go to original source...
  7. Bhusal N., Han S.G., Yoon T.M.: Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). - Sci. Hortic.-Amsterdam 246: 535-543, 2019. Go to original source...
  8. Brito C., Dinis L.T., Moutinho-Pereira J. et al.: Drought stress effects and olive tree acclimation under a changing climate. - Plants 8: 232-252, 2019. Go to original source...
  9. Chen G.Y., Yu G.L., Chen Y. et al.: [Exploring the observation methods of photosynthetic responses to light and carbon dioxide.] - J. Plant Psychophysiol. Mol. Biol. 32: 691-696, 2006. [In Chinese]
  10. Chen X.J., Zhang G.C., Liu X. et al.: [Diurnal variations and response to light of gas exchange parameters of clove (Syringa oblata Lindl.) leaf in loess hilly region.] - Sci. Soil Water Conserv. 2: 102-107, 2004. [In Chinese]
  11. Davidson A.M., Da Silva D., Saa S. et al.: The influence of elevated CO2 on the photosynthesis, carbohydrate status, and plastochron of young peach (Prunus persica) trees. - Hortic. Environ. Biote. 57: 364-370, 2016. Go to original source...
  12. Dong Z.X., Han Q.F., Jia Z.K. et al.: [Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties.] - Acta Ecol. Sin. 27: 2272-2278, 2007. [In Chinese]
  13. Drake J.E., Power S.A., Duursma R.A. et al.: Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. - Agr. Forest Meteorol. 247: 454-466, 2017. Go to original source...
  14. Dubois J.J.B., Fiscus E.L., Booker F.L. et al.: Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. - New Phytol. 176: 402-414, 2007. Go to original source...
  15. Ellsworth D.S., Crous K.Y., Lambers H., Cooke J.: Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. - Plant Cell Environ. 38: 1142-1156, 2015. Go to original source...
  16. Falqueto A.R., da Silva Jśnior R.A., Gomes M.T.G. et al.: Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. - Sci. Hortic.-Amsterdam 224: 238-243, 2017. Go to original source...
  17. Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  18. Feng X., Dietze M.: Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian para-meterization of photosynthesis models. - New Phytol. 200: 1132-1144, 2013. Go to original source...
  19. Groenendijk M., Dolman A.J., van der Molen M.K. et al.: Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. - Agr. Forest Meteorol. 151: 22-38, 2011. Go to original source...
  20. Guan J., Wang J., Lv X.: Pn-PAR and CO2 responses of Prunus avium to drought stress during hard nucleus stage. 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018). - Adv. Eng. Res. 163: 408-411, 2018. Go to original source...
  21. Guo W.X., Zhao Z.J., Zheng J., Li J.Q.: Interaction of soil water and nitrogen on the photosynthesis and growth in Pinus tabulaeformis seedlings. - Sci. Silvae Sin. 53: 37-48, 2017.
  22. Ha R., Ma Y.P., Cao B. et al.: [Effects of simulated elevated CO2 concentration on vegetative growth and fruit quality in Lycium barbarum.] - Sci. Silvae Sin. 55: 28-36, 2019. [In Chinese]
  23. Harley P.C., Thomas R.B., Reynolds J.F., Strain B.R.: Modelling photosynthesis of cotton grown in elevated CO2. - Plant Cell Environ. 15: 271-282, 1992. Go to original source...
  24. Heyam D.: Determination of moisture content and liquid limit of foundations soils, using microwave radiation, in different locations of Sulaimani governorate, Kurdistan region-Iraq. - World Acad. Sci. Ing. Technol. 6: 544-550, 2012.
  25. Hu W.H., Hu X.H., Zeng J.J. et al.: [Effects of drought on photosynthetic characteristics in two pepper cultivars.] - J. Huazhong Agr. Univ. 27: 776-781, 2008. [In Chinese]
  26. IPCC: Summary for Policymakers. - In: Stocker T.F., Qin D.H., Plattner G.K. et al. (ed.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 3-29. Cambridge University Press, Cambridge-New York 2013.
  27. Jiao Y.M., Wei X.L.: [Application of two photosynthetic light response and CO2 response curve-fitting models on karst species.]- Guizhou Agr. Sci. 4: 162-167, 2010. [In Chinese] Go to original source...
  28. Jin J.T., Li Y., Li R.J. et al.: [Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development.] - Plant Physiol. J. 55: 558-568, 2019. [In Chinese]
  29. Kang H.J., Tao Y.L., Quan W. et al.: [Fitting mitochondrial respiration rates under light by photosynthetic CO2 response models.] - Chin. J. Plant Ecol. 38: 1356-1363, 2014. [In Chinese] Go to original source...
  30. Karimi S., Rahemi M., Rostami A.A., Sedaghat S.: Drought effects on growth, water content and osmoprotectants in four olive cultivars with different drought tolerance. - Int. J. Fruit Sci. 18: 254-267, 2018. Go to original source...
  31. Kathilankal J.C., Mozdzer T.J., Fuentes J.D. et al.: Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes. - Hydrobiologia 669: 167, 2011. Go to original source...
  32. King J.L., Edwards G.E., Cousins A.B.: The efficiency of the CO2-concentrating mechanism during single-cell C4 photosynthesis. - Plant Cell Environ. 35: 513-523, 2012. Go to original source...
  33. Lang Y., Wang M., Zhang G.C., Zhao K.Q.: Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. - Photosynthetica 51: 370-378, 2013. Go to original source...
  34. Liang X.Y., Liu S.R.: [A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curve.] - Chin. J. Plant Ecol. 41: 693-706, 2017. [In Chinese] Go to original source...
  35. Liu J.J., Li J.Y., Zhang J.G.: [Influences of drought stress on photosynthetic characteristics and water use efficiency of 4 tree species under elevated CO2 concentration.] - For. Res. 28: 339-345, 2015. [In Chinese]
  36. Liu X., Luo G.J.: [Effect of water stress on growth and physiological characteristics in Quercus acutissima.] - J. North. Agric. 47: 11-14, 2019. [In Chinese] Go to original source...
  37. Liu Z.S., Yang W.Y., Yu X.L.: A new predictive model for plants photosynthesis influenced by major climatic conditions. - 2019 IOP Conf. Ser.: Earth Environ. Sci. 291: 1-7, 2019b. Go to original source...
  38. Liu Z.Y., Ma C.M., Liu C.P. et al.: [Construction and validation of water-consumption prediction model for Prunus sibirica in the rocky mountainous area of north China.] - J. Centr. South Univ. For. Technol. 39: 21-27, 2019a. [In Chinese]
  39. Lu S.W., Ding J., Li S.N. et al.: [Studies on characteristics of water consumption for transpiration of economic forest tree species.] - J. Henan Agric. Sci. 46: 113-119, 2017. [In Chinese]
  40. Lv Y., Liu T.X., Yan X. et al.: [Response of photosynthetic rate of Salix gordejevii and Caragana microphylla to light intensity and CO2 concentration in the dune-meadow transitional area of Horqin sandy land.] - Chin. J. Ecol. 36: 3157-3167, 2016. [In Chinese]
  41. Nickelsen K.: Explaining Photosynthesis: Models of Biochemical Mechanisms. Pp. 220-226. Springer, Dordrecht 2015. Go to original source...
  42. Niinemets Ü., Keenan T.F., Hallik L.: A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. - New Phytol. 205: 973-993, 2015. Go to original source...
  43. Reich P.B., Sendall K.M., Stefanski A. et al.: Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. - Nature 562: 263-267, 2018. Go to original source...
  44. Renninger H.J., Carlo N., Clark K.L., Schäfer K.V.: Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. - Tree Physiol. 34: 159-173, 2014. Go to original source...
  45. Sharkey T.D.: What gas exchange data can tell us about photosynthesis. - Plant Cell Environ. 39: 1161-1163, 2016. Go to original source...
  46. Singh S.K., Reddy V.R.: Methods of mesophyll conductance estimation: Its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2. - Physiol. Plantarum 157: 234-254, 2016. Go to original source...
  47. Sun J.D., Feng Z.Z., Leakey A.D.B. et al.: Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular and non-rectangular hyperbola biochemical models of leaf photosynthesis - A case study of CO2 enrichment and leaf aging effects in soybean. - Plant Sci. 226: 49-60, 2014. Go to original source...
  48. von Caemmerer S.: Steady-state models of photosynthesis. - Plant Cell Environ. 36: 1617-1630, 2013. Go to original source...
  49. Walker B.J., Orr D.J., Carmo-Silva E. et al.: Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis. - Photosynth. Res. 132: 245-255, 2017. Go to original source...
  50. Wang G.P., Li F., Zhang J. et al.: Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. - Photosynthetica 48: 30-41, 2010. Go to original source...
  51. Wang H.Z., Han L., Xu Y.L. et al.: [Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin, China.] - Acta Ecol. Sin. 37: 432-442, 2017. [In Chinese] Go to original source...
  52. Wang J.L., Yu G.R., Wang B.L. et al.: [Response of photosynthetic rate and stomatal conductance of rice to light intensity and CO2 concentration in northern China.] - Acta Phytoecol. Sin. 29: 16-25, 2005. [In Chinese] Go to original source...
  53. Wang Q., Liu X.M., Wang H.T. et al.: [Effects of drought and waterlogging on growth and photosynthesis of potted young Pinus tabulaeformis Carr.] - Sci. Soil Water Conserv. 13: 40-47, 2015. [In Chinese]
  54. Wang Y., Sperry J.S., Venturas M.D. et al.: The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model. - Tree Physiol. 39: 1416-1427, 2019. Go to original source...
  55. Wang Z.C., Kang S.Z., Jensen C.R., Liu F.L.: Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. - J. Exp. Bot. 63: 1145-1153, 2012. Go to original source...
  56. Watling J.R., Press M.C., Quick W.P.: Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. - Plant Physiol. 123: 1143-1152, 2000. Go to original source...
  57. Wu X., Tang Y.K., Chen C. et al.: [Photosynthesis light response characteristics and environmental adaptability of Hippophae rhamnoides L., Pinus tabulaeformis and Robinia pseudoacacia in the Loess hilly region of China.] - Acta Ecol. Sin. 39: 8111-8125, 2019. [In Chinese] Go to original source...
  58. Xia X.X., Zhang S.Y., Zhang G.C. et al.: [Effects of soil moisture on the photosynthetic light reaction of Rosa xanthina L. in a loess hilly region.] - Acta Ecol. Sin. 36: 5142-5149, 2016. [In Chinese]
  59. Xu D.Q.: [The science of photosynthesis.] Pp. 236-244. Science Press, Beijing 2013. [In Chinese]
  60. Yang R., Lang Y., Zhang G.C. et al.: [Responses of photosynthesis and fluorescence of Ziziphus jujuba var. spinosa to soil drought stress.] - Acta Bot. Bor.-Occident. Sin. 38: 922-931, 2018. [In Chinese]
  61. Ye Z.P.: [A review on modeling of responses of photosynthesis to light and CO2.] - Chin. J. Plant Ecol. 34: 727-740, 2010. [In Chinese]
  62. Ye Z.P., Duan S.H., An T. et al.: [Construction of CO2-response model of electron transport rate in C4 crop and its applica-tion.] - Chin. J. Plant Ecol. 42: 1000-1008, 2018. [In Chinese] Go to original source...
  63. Ye Z.P., Gao J.: [Change of carboxylation efficiency of Salvia miltiorrhiza in the vicinity of CO2 compensation point.] - J. North. Agric. For. Univ. 36: 160-164, 2008. [In Chinese] Go to original source...
  64. Ye Z.P., Gao J.: [Application of a new model of light-response and CO2-response of photosynthesis in Salvia miltiorrhiza.] -J. North. Agric. For. Univ. 37: 129-134, 2009. [In Chinese]
  65. Ye Z.P., Wang Y.J., Wang L.L. et al.: [Response of photo-respiration of Glycine max leaves to light intensity and CO2 concentration.] - Chin. J. Ecol. 36: 2535-2541, 2017. [In Chinese]
  66. Ye Z.P., Yu Q.: [A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations.] - Chin. J. Ecol. 28: 2233-2238, 2009. [In Chinese]
  67. Yiotis C., Manetas Y.: Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: Evidence for innately high photorespiration and cyclic electron flow rates. - Planta 232: 523-531, 2010. Go to original source...
  68. Zeng W., Zhou G.S., Jia B.R. et al.: Comparison of parameters estimated from A/Ci and A/Cc curve analysis. - Photosynthetica 48: 323-331, 2010. Go to original source...
  69. Zhang G.C., Liu X., He K.N.: [Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil's water availability and productivity in semi-arid region of Loess Plateau.] - J. Appl. Ecol. 14: 858-862, 2003. [In Chinese]
  70. Zhao Y.W., Duan S.R., Zheng Y. et al.: [Comparison of light response curve and CO2 response curve of Sophora moor-croftiana under several photosynthesis models.] - J. Plateau Agric. 1: 159-165, 2017. [In Chinese]