Photosynthetica 2021, 59(SI):458-467 | DOI: 10.32615/ps.2021.035

Drought tolerance monitoring of apple rootstock M.9-T337 based on infrared and fluorescence imaging

D.T. GAO1, 2, 3, C.Y. SHI3, Q.L. LI3, Z.F. WEI3, L. LIU3, J.R. FENG1, 2
1 Department of Horticulture, College of Agriculture, Shihezi University, 832003 Shihezi, Xinjiang, China
2 Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables, Cultivation Physiology and Germplasm Resources Utilization, 832003 Shihezi, Xinjiang, China
3 Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, Henan, China

Apple rootstock seedling M.9-T337 was selected to explore the effect of drought stress. The findings indicated that the relative water content of both the leaf and soil gradually decreased with an increase in drought stress. The water-use efficiency of the leaves increased gradually but decreased sharply after 20 d of drought. Changes in the gas-exchange parameters and chlorophyll fluorescence parameters reflected the gradual decrease in the photosynthetic capacity of the plants with drought stress duration. Infrared thermal imaging showed significant temperature differences between the drought-stressed and control plants after 15 d of drought treatment. When irreversible damage occurred under drought stress, the crop water-stress index and relative water content of the leaf and soil were 0.7, 60.5, and 17.8%, respectively. Based on the results, we formulated a drought stress-grade standard. Further, we established that the best time for irrigation is when drought stress reaches grade 3.

Additional key words: chlorophyll fluorescence; drought stress; infrared thermal imaging; M.9-T337; photosynthesis.

Received: December 31, 2020; Revised: June 15, 2021; Accepted: June 24, 2021; Published: July 23, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
GAO, D.T., SHI, C.Y., LI, Q.L., WEI, Z.F., LIU, L., & FENG, J.R. (2021). Drought tolerance monitoring of apple rootstock M.9-T337 based on infrared and fluorescence imaging. Photosynthetica59(SPECIAL ISSUE), 458-467. doi: 10.32615/ps.2021.035
Download citation

Supplementary files

Download fileGao_2680_supplement.docx

File size: 589.49 kB

References

  1. Améglio T., Archer P., Cohen M. et al.: Significance and limits in the use of predawn leaf water potential for tree irrigation. - Plant Soil 207: 155-167, 1999.
  2. Anjum S.A., Xie X.-Y., Wang L.-C. et al.: Morphological, physiological and biochemical responses of plants to drought stress. - Afr. J. Agr. Res. 6: 2026-2032, 2011.
  3. Baker J.T., Gitz D., Payton P. et al.: Using leaf gas exchange to quantify drought in cotton irrigated based on canopy temperature measurements. - Agron. J. 99: 637-644, 2007. Go to original source...
  4. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  5. Baranowski P., Lipecki J., Mazurek W., Walczak R.T.: Detection of watercore in 'Gloster' apples using thermography. - Postharvest Biol. Tec. 47: 358-366, 2008. Go to original source...
  6. Baranowski P., Mazurek W.: Detection of physiological disorders and mechanical defects in apples using thermography. - Int. Agrophys. 23: 9-17, 2009.
  7. Baranowski P., Mazurek W., Witkowska-Walczak B., S³awiñski C.: Detection of early apple bruises using pulsed-phase thermography. - Postharvest Biol. Tec. 53: 91-100, 2009. Go to original source...
  8. Bartels D., Sunkar R.: Drought and salt tolerance in plants. - Crit. Rev. Plant Sci. 24: 23-58, 2005. Go to original source...
  9. Basu S., Ramegowda V., Kumar A., Pereira A.: Plant adaptation to drought stress. - F1000Res. 5: 1554, 2016. Go to original source...
  10. Biju S., Fuentes S., Gupta D.: The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes. - Plant Physiol. Bioch. 127: 11-24, 2018. Go to original source...
  11. Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. - Photosynth. Res. 25: 173-185, 1990. Go to original source...
  12. Centritto M., Brilli F., Fodale R., Loreto F.: Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. - Tree Physiol. 31: 275-286, 2011. Go to original source...
  13. Chen Y., Wang Z., Shen Z. et al.: Effects of oxytetracycline on growth and chlorophyll fluorescence in rape (Brassica campestris L.). - Pol. J. Environ. Stud. 26: 995-1001, 2017. Go to original source...
  14. Cohen Y., Alchanatis V., Meron M. et al.: Estimation of leaf water potential by thermal imagery and spatial analysis. - J. Exp. Bot. 56: 1843-1852, 2005. Go to original source...
  15. Du S.Q., Kang S.Z., Li F.S., Du T.S.: Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China. - Agr. Water Manage. 179: 184-192, 2017. Go to original source...
  16. Earl H.J.: Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. - Environ. Exp. Bot. 48: 237-246, 2002. Go to original source...
  17. Escalona J.M., Flexas J., Medrano H.: Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. - Funct. Plant Biol. 26: 421-433, 1999. Go to original source...
  18. Farage P.K., Blowers D., Long S.P., Baker N.R.: Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. - Plant Cell Environ. 29: 720-728, 2006. Go to original source...
  19. Farooq M., Wahid A., Kobayashi N. et al.: Plant drought stress: effects, mechanisms and management. - Agron. Sustain. Dev. 29: 185-212, 2009. Go to original source...
  20. Figueroa F.L., Conde-Álvarez R., Gómez I.: Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. - Photosynth. Res. 75: 259-275, 2003. Go to original source...
  21. Gao D., Guo J., Wei Z. et al.: Evaluation of productivity and light quality in two high density dwarf rootstock apple orchards in central China. - Agr. Sci. Technol. 13: 1848-1853, 2012.
  22. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  23. Hao P., Zhu J., Gu A. et al.: An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. - Proteomics 15: 1544-1563, 2015. Go to original source...
  24. Henriques F.S.: Leaf chlorophyll fluorescence: background and fundamentals for plant biologists. - Bot. Rev. 75: 249-270, 2009. Go to original source...
  25. Hogewoning S.W., Harbinson J.: Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. - J. Exp. Bot. 58: 453-463, 2007. Go to original source...
  26. Höhnle M.K., Weber G.: Efficient adventitious shoot formation of leaf segments of in vitro propagated shoots of the apple rootstock M.9/T337. - Eur. J. Hortic. Sci. 75: 128-131, 2010.
  27. Idso S.B., Jackson R.D., Pinter Jr P.J. et al.: Normalizing the stress-degree-day parameter for environmental variability. - Agr. Meteorol. 24: 45-55, 1981. Go to original source...
  28. Jaleel C.A., Manivannan P., Wahid A. et al.: Drought stress in plants: a review on morphological characteristics and pigments composition. - Int. J. Agric. Biol. 11: 100-105, 2009.
  29. Jensen P.J., Halbrendt N., Fazio G. et al.: Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. - BMC Genomics 13: 9, 2012. Go to original source...
  30. Jiang H.X., Chen L.S., Zheng J.G. et al.: Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. - Tree Physiol. 28: 1863-1871, 2008. Go to original source...
  31. Jones H.G.: Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. - Adv. Bot. Res. 41: 107-163, 2004. Go to original source...
  32. Kashiwagi J., Krishnamurthy L., Upadhyaya H.D., Gaur P.M.: Rapid screening technique for canopy temperature status and its relevance to drought tolerance improvement in chickpea. - J. SAT Agric. Res. 6: 105, 2008. Go to original source...
  33. Khanal S., Fulton J., Shearer S.: An overview of current and potential applications of thermal remote sensing in precision agriculture. - Comput. Electron. Agr. 139: 22-32, 2017. Go to original source...
  34. Kumagai E., Araki A., Kubota F.: Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. - Plant Prod. Sci. 12: 50-53, 2015. Go to original source...
  35. Leinonen I., Grant O.M., Tagliavia C.P.P. et al.: Estimating stomatal conductance with thermal imagery. - Plant Cell Environ. 29: 1508-1518, 2006. Go to original source...
  36. Liao T., Wang Y., Xu C.P. et al.: Adaptive photosynthetic and physiological responses to drought and rewatering in triploid Populus populations. - Photosynthetica 56: 578-590, 2018. Go to original source...
  37. Lima R.S.N., García-Tejero I., Lopes T.S. et al.: Linking thermal imaging to physiological indicators in Carica papaya L. under different watering regimes. - Agr. Water Manage. 164: 148-157, 2016. Go to original source...
  38. Liu Y., Li S., Chen F. et al.: Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China. - Agr. Water Manage. 97: 769-775, 2010. Go to original source...
  39. Liu Y., Subhash C., Yan J. et al.: Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. - Environ. Exp. Bot. 71: 158-165, 2011. Go to original source...
  40. Longenberger P.S., Smith C.W., Duke S.E., McMichael B.L.: Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. - Euphytica 166: 25, 2009. Go to original source...
  41. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  42. Miyashita K., Tanakamaru S., Maitani T., Kimura K.: Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. - Environ. Exp. Bot. 53: 205-214, 2005. Go to original source...
  43. Nilsson H.-E.: Remote sensing and image analysis in plant pathology. - Annu. Rev. Phytopathol. 15: 489-527, 1995. Go to original source...
  44. Oxborough K., Baker N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv'/Fm' without measuring F0'. - Photosynth. Res. 54: 135-142, 1997. Go to original source...
  45. Pérez-López U., Robredo A., Lacuesta M. et al.: Elevated CO2 reduces stomatal and metabolic limitations on photosyn-thesis. - Photosynth. Res. 111: 269-283, 2012. Go to original source...
  46. Pettigrew W.T.: Physiological consequences of moisture deficit stress in cotton. - Crop Sci. 44: 1265-1272, 2004. Go to original source...
  47. Ring E.F.J., Ammer K.: Infrared thermal imaging in medicine. - Physiol. Meas. 33: R33, 2012. Go to original source...
  48. Schreiber U., Quayle P., Schmidt S. et al.: Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. - Biosens. Bioelectron. 22 : 2554-2563, 2007. Go to original source...
  49. Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. - Photosynth. Res. 10: 51-62, 1986. Go to original source...
  50. Shao H.-B., Chu L.-Y., Jaleel C.A. et al.: Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. - Crit. Rev. Biotechnol. 29: 131-151, 2009. Go to original source...
  51. Shao H.F., Chen Z., Xu J.: [Physiological responses of two tobacco cultivar leaves to different drought stresses during seedling stage.] - Plant Physiol. J. 12: 1861-1871, 2016. [In Chinese]
  52. Siddique M.R.B., Hamid A., Islam M.S.: Drought stress effects on water relations of wheat. - Bot. Bull. Acad. Sin. 41: 35-39, 2000.
  53. Silva M.D.A., Jifon J.L., da Silva J.A.G. et al.: Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. - Braz. J. Plant Physiol. 19: 193-201, 2007. Go to original source...
  54. Srivastava K.K., Kumar D., Singh S.R., Sharma O.C.: Effect of cultivars on tree growth, yield and quality attributes of apple on espalier architecture under high density planting system. - J. Hortic. Sci. 14: 20-25, 2019. Go to original source...
  55. Vadivambal R., Jayas D.S.: Applications of thermal imaging in agriculture and food industry - a review. - Food Bioproc. Tech. 4: 186-199, 2011. Go to original source...
  56. van Rensburg L., Krüger G.H.J.: Comparative analysis of differential drought stress-induced suppression of and recovery in carbon dioxide fixation: stomatal and non-stomatal limitation in Nicotiana tabacum L. - J. Plant Physiol. 142: 296-306, 1993. Go to original source...
  57. Varith J., Hyde G.M., Baritelle A.L. et al.: Non-contact bruise detection in apples by thermal imaging. - Innov. Food Sci. Emerg. Technol. 4: 211-218, 2003. Go to original source...
  58. Wang M., Xiong Y., Ling N. et al.: Detection of the dynamic response of cucumber leaves to fusaric acid using thermal imaging. - Plant Physiol. Bioch. 66: 68-76, 2013. Go to original source...
  59. Weber M.S.: Optimizing the tree density in apple orchards on dwarf rootstocks. - Acta Hortic. 557: 229-234, 2001. Go to original source...
  60. Wiriya-Alongko W., Spreer W., Ongprasert S. et al.: Detecting drought stress in longan tree using thermal imaging. - Maejo. Int. J. Sci. Technol. 7: 166-180, 2013.
  61. Woo N.S., Badger M.R., Pogson B.J.: A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. - Plant Methods 4: 27, 2008. Go to original source...
  62. Xiong L., Wang R.G., Mao G., Koczan J.M.: Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. - Plant Physiol. 142: 1065-1074, 2006. Go to original source...
  63. Zai X.M., Zhu S.N., Qin P. et al.: Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. - Photosynthetica 50: 323-328, 2012. Go to original source...
  64. Zhang J.H., Jia W.S., Yang J.C., Ismail A.M.: Role of ABA in integrating plant responses to drought and salt stresses. - Field Crop. Res. 97: 111-119, 2006. Go to original source...
  65. Zhou S., Duursma R.A., Medlyn B.E. et al.: How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. - Agr. Forest Meteorol. 182-183: 204-214, 2013. Go to original source...
  66. Zia S., Romano G., Spreer W. et al.: Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. - J. Agron. Crop Sci. 199: 75-84, 2013. Go to original source...