Photosynthetica 2023, 61(3):342-353 | DOI: 10.32615/ps.2023.027

Impact of salt stress on physiology, leaf mass, and nutrient accumulation in romaine lettuce

B. ADHIKARI1, O.J. OLORUNWA1, S. BRAZEL1, 2, T.C. BARICKMAN1, 3, R. BHEEMANAHALLI4
1 Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Verona, MS, USA
2 Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
3 Fluence Bioengineering, Austin, TX, USA
4 Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA

The impact of salt stress is becoming more prevalent each year, largely due to the effects of climate change. Limited availability of salt-free water is rising concern for hydroponics lettuce production. Despite evidence supporting salt stress-induced quality losses and physiological changes, studies on romaine lettuce salt-stress tolerance are limited. This study examined the mechanism underlying the sodium chloride (NaCl) tolerance (0, 50, 100, and 150 mM) of lettuce on its growth and nutrition at late-rosette and early head-formation stages. Results revealed 76% fresh mass reduction under increased NaCl at both stages. The study also found unchanged carbon assimilation with reduced stomatal conductance under increased NaCl. Salt-stressed lettuce accumulated more boron and iron but had reduced phosphorus and calcium. Phenolics and sugars increased linearly under salt stress, suggesting that lettuce responds to increased oxidative stress at both stages. A positive association between salt treatment and sodium to potassium ion ratio indicated lettuce sensitivity to salt stress at both stages.

Additional key words: carbon assimilation; gas exchange; nutrition; romaine lettuce; salt tolerance; sodium chloride.

Received: February 28, 2023; Revised: June 21, 2023; Accepted: June 26, 2023; Prepublished online: July 11, 2023; Published: October 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ADHIKARI, B., OLORUNWA, O.J., BRAZEL, S., BARICKMAN, T.C., & BHEEMANAHALLI, R. (2023). Impact of salt stress on physiology, leaf mass, and nutrient accumulation in romaine lettuce. Photosynthetica61(3), 342-353. doi: 10.32615/ps.2023.027
Download citation

Supplementary files

Download fileAdhikari_3010_supplement.docx

File size: 331.75 kB

References

  1. Acosta-Motos J.R., Hernández J.A., Álvarez S. et al.: The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by Eugenia myrtifolia plants in response to saline reclaimed water. - Plant Physiol. Biochem. 111: 244-256, 2017. Go to original source...
  2. Adhikari B., Olorunwa O.J., Wilson J.C., Barickman T.C.: Morphological and physiological response of different lettuce genotypes to salt stress. - Stresses 1: 285-304, 2021. Go to original source...
  3. Ahmad P., Azooz M.M., Prasad M.N.V.: Ecophysiology and Responses of Plants under Salt Stress. Pp. 512. Springer, New York 2013. Go to original source...
  4. Al-aghabary K., Zhu Z., Shi Q.: Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. - J. Plant Nutr. 27: 2101-2115, 2005. Go to original source...
  5. Ali K., Maltese F., Figueiredo A. et al.: Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points. - Plant Sci. 191-192: 100-107, 2012. Go to original source...
  6. Álvarez S., Sánchez-Blanco M.J.: Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. - Plant Biol. 16: 757-764, 2014. Go to original source...
  7. Aroca R., Ruiz-Lozano J.M., Zamarreño Á.M. et al.: Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. - J. Plant Physiol. 170: 47-55, 2013. Go to original source...
  8. Aydin A., Kant C., Turan M.: Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. - Afr. J. Agr. Res. 7: 1073-1086, 2012. Go to original source...
  9. Azevedo Neto A.D.D., Tabosa J.N.: [Salt stress in maize seedlings: Part II. Distribution of cationic macronutrients and its relation with sodium.] - Rev. Bras. Eng. Agr. Amb. 4: 165-171, 2000. [In Portuguese] Go to original source...
  10. Barbieri G., Vallone S., Orsini F. et al.: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). - J. Plant Physiol. 169: 1737-1746, 2012. Go to original source...
  11. Barbosa G.L., Gadelha F.D.A., Kublik N. et al.: Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. - Int. J. Environ. Res. Public Health 12: 6879-6891, 2015. Go to original source...
  12. Barickman T.C., Kopsell D.A., Sams C.E.: Abscisic acid impacts tomato carotenoids, soluble sugars, and organic acids. - HortScience 51: 370-376, 2016. Go to original source...
  13. Bartha C., Fodorpataki L., Martinez-Ballesta M.D.C. et al.: Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. - J. Appl. Bot. Food Qual. 88: 42-48, 2015.
  14. Beltrão J., Trindade D., Correia P.J.: Lettuce yield response to salinity of sprinkle irrigation water. - Acta Hortic. 449: 623-627, 1997. Go to original source...
  15. Ben-Gal A., Shani U.: Water use and yield of tomatoes under limited water and excess boron. - Plant Soil 256: 179-186, 2003. Go to original source...
  16. Bernacchi C.J., Singsaas E.L., Pimentel C. et al.: Improved temperature response functions for models of Rubisco-limited photosynthesis. - Plant Cell Environ. 24: 253-259, 2001. Go to original source...
  17. Bliss R.M., Moshfegh A.J.: The third step - The national "What We Eat in America" survey. - Agric. Res. Mag. 60: 16-21, 2012.
  18. Bongi G., Loreto F.: Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves. - Plant Physiol. 90: 1408-1416, 1989. Go to original source...
  19. Brugnoli E., Björkman O.: Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. - Planta 187: 335-347, 1992. Go to original source...
  20. Cai Y.-F., Zhang S.-B., Hu H., Li S.-Y.: Photosynthetic performance and acclimation of Incarvillea delavayi to water stress. - Biol. Plantarum 54: 89-96, 2010. Go to original source...
  21. Carillo P., Giordano M., Raimondi G. et al.: Physiological and nutraceutical quality of green and red pigmented lettuce in response to NaCl concentration in two successive harvests. - Agronomy 10: 1358, 2020. Go to original source...
  22. Carillo P., Raimondi G., Kyriacou M.C. et al.: Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce tolerance to salt stress. - Sci. Hortic.-Amsterdam 249: 22-30, 2019. Go to original source...
  23. Cartea M.E., Francisco M., Soengas P., Velasco P.: Phenolic compounds in Brassica vegetables. - Molecules 16: 251-280, 2011. Go to original source...
  24. Chartzoulakis K.S.: Salinity and olive: growth, salt tolerance, photosynthesis and yield. - Agr. Water Manage. 78: 108-121, 2005. Go to original source...
  25. Cramer G., Epstein E., Läuchli A.: Na-Ca interactions in barley seedlings: relationship to ion transport and growth. - Plant Cell Environ. 12: 551-558, 1989. Go to original source...
  26. Dahiya S.S., Singh M.: Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium in pea (Pisum sativum L.) crop. - Plant Soil 44: 697-702, 1976. Go to original source...
  27. Davis W.V., Lucier G.: Vegetable and Pulses Outlook: April 2021. Vegetables and Pulses Outlook No. VGS-366. Pp. 68. Economic Research Service, U.S. Department of Agriculture, 2021. Available at: https://www.ers.usda.gov/publications/pub-details/?pubid=100968.
  28. Delfine S., Alvino A., Villani M.C., Loreto F.: Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. - Plant Physiol. 119: 1101-1106, 1999. Go to original source...
  29. Delfine S., Alvino A., Zacchini M., Loreto F.: Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. - Aust. J. Plant Physiol. 25: 395-402, 1998. Go to original source...
  30. Demidchik V., Maathuis F.: Ion Channels and Plant Stress Responses. Pp. 237. Springer, Berlin-Heidelberg 2010. Go to original source...
  31. Dubey R.S., Singh A.K.: Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. - Biol. Plantarum 42: 233-239, 1999. Go to original source...
  32. Elbasan F., Ozfidan-Konakci C., Yildiztugay E., Kucukoduk M.: Rare-earth element scandium improves stomatal regulation and enhances salt and drought stress tolerance by up-regulating antioxidant responses of Oryza sativa. - Plant Physiol. Biochem. 152: 157-169, 2020. Go to original source...
  33. Everard J.D., Gucci R., Kann S.C. et al.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. - Plant Physiol. 106: 281-292, 1994. Go to original source...
  34. Franzoni G., Cocetta G., Trivellini A. et al.: Effect of exogenous application of salt stress and glutamic acid on lettuce (Lactuca sativa L.). - Sci. Hortic.-Amsterdam 299: 111027, 2022. Go to original source...
  35. Gadallah M.A.A.: Effects of proline and glycine betaine on Vicia faba responses to salt stress. - Biol. Plantarum 42: 249-257, 1999. Go to original source...
  36. Garrido Y., Tudela J.A., Marín A. et al.: Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. - J. Sci. Food Agr. 94: 1592-1599, 2014. Go to original source...
  37. Giannoccaro E., Wang Y.-J., Chen P.: Effects of solvent, temperature, time, solvent-to-sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean. - J. Food Sci. 71: C59-C64, 2006. Go to original source...
  38. Giuffrida F., Scuderi D., Giurato R., Leonardi C.: Physiological response of broccoli and cauliflower as affected by NaCl salinity. - Acta Hortic. 1005: 435-441, 2012. Go to original source...
  39. Goudarzi M., Pakniyat H.: Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. - J. Agr. Soc. Sci 4: 35-38, 2008.
  40. Gulías J., Flexas J., Abadía A., Madrano H.: Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species. -Tree Physiol. 22: 687-697, 2002. Go to original source...
  41. Hamani A.K.M., Wang G., Soothar M.K. et al.: Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. - BMC Plant Biol. 20: 434, 2020. Go to original source...
  42. Hasegawa P.M., Bressan R.A., Zhu J.-K., Bohnert H.J.: Plant cellular and molecular responses to high salinity. - Annu. Rev. Plant Biol. 51: 463-499, 2000. Go to original source...
  43. Hazell P., Wood S.: Drivers of change in global agriculture. - Philos. T. Roy. Soc. B 363: 495-515, 2008. Go to original source...
  44. Hernandez J.A., Olmos E., Corpas F.J. et al.: Salt-induced oxidative stress in chloroplasts of pea plants. - Plant Sci. 105: 151-167, 1995. Go to original source...
  45. Husain S.R., Cillard J., Cillard P.: Hydroxyl radical scavenging activity of flavonoids. - Phytochemistry 26: 2489-2491, 1987. Go to original source...
  46. Isayenkov S.V.: Physiological and molecular aspects of salt stress in plants. - Cytol. Genet. 46: 302-318, 2012. Go to original source...
  47. Isayenkov S.V., Maathuis F.J.M.: Plant salinity stress: many unanswered questions remain. - Front. Plant Sci. 10: 80, 2019. Go to original source...
  48. James R.A., Munns R., von Caemmerer S. et al.: Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. - Plant Cell Environ. 29: 2185-2197, 2006. Go to original source...
  49. James R.A., Rivelli A.R., Munns R., von Caemmerer S.: Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. - Funct. Plant Biol. 29: 1393-1403, 2002. Go to original source...
  50. Kader M.A., Seidel T., Golldack D., Lindberg S.: Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. - J. Exp. Bot. 57: 4257-4268, 2006. Go to original source...
  51. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  52. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  53. Kang H.-M., Saltveit M.E.: Antioxidant capacity of lettuce leaf tissue increases after wounding. - J. Agr. Food Chem. 50: 7536-7541, 2002. Go to original source...
  54. Knauer J., Zaehle S., De Kauwe M.G. et al.: Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. - Plant J. 101: 858-873, 2020. Go to original source...
  55. Kurunc A.: Effects of water and salinity stresses on growth, yield, and water use of iceberg lettuce. - J. Sci. Food Agr. 101: 5688-5696, 2021. Go to original source...
  56. Larcher W., Wagner J., Thammathaworn A.: Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress. - J. Plant Physiol. 136: 92-102, 1990. Go to original source...
  57. Lemos Neto H. de S., de Almeida Guimarães M., Mesquita R.O. et al.: Silicon supplementation induces physiological and biochemical changes that assist lettuce salinity tolerance. - Silicon 13: 4075-4089, 2021. Go to original source...
  58. Loudari A., Benadis C., Naciri R. et al.: Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. - J. Plant Interact. 15: 398-405, 2020. Go to original source...
  59. Lu C., Qiu N., Wang B., Zhang J.: Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. - J. Exp. Bot. 54: 851-860, 2003. Go to original source...
  60. Ma Y., An Y., Shui J., Sun Z.: Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China. - Plant Sci. 181: 638-643, 2011. Go to original source...
  61. Machado R.M.A., Serralheiro R.P.: Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. - Horticulturae 3: 30, 2017. Go to original source...
  62. Maggio A., Raimondi G., Martino A., De Pascale S.: Salt stress response in tomato beyond the salinity tolerance threshold. - Environ. Exp. Bot. 59: 276-282, 2007. Go to original source...
  63. Marschner P.: Marschner's Mineral Nutrition of Higher Plants. 3rd Edition. Pp. 651. Academic Press, Amsterdam 2012.
  64. Martin B., Ruiz-Torres N.A.: Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). - Plant Physiol. 100: 733-739, 1992. Go to original source...
  65. Miller A.G.: Optimization of greenhouse hydroponic lettuce production. Thesis. Pp. 78. The Purdue University, West Lafayette 2019.
  66. Munns R., Tester M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  67. Nicolle C., Cardinault N., Gueux E. et al.: Health effect of vegetable-based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. - Clin. Nutr. 23: 605-614, 2004. Go to original source...
  68. Olorunwa O.J., Adhikari B., Brazel S. et al.: Waterlogging during the reproductive growth stage causes physiological and biochemical modifications in the leaves of cowpea (Vigna unguiculata L.) genotypes with contrasting tolerance. - Plant Physiol. Biochem. 190: 133-144, 2022a. Go to original source...
  69. Olorunwa O.J., Adhikari B., Brazel S. et al.: Growth and photosynthetic responses of cowpea genotypes under waterlogging at the reproductive stage. - Plants-Basel 11: 2315, 2022b. Go to original source...
  70. Ondrasek G., Rengel Z., Mauroviæ N. et al.: Growth and element uptake by salt-sensitive crops under combined NaCl and Cd stresses. - Plants-Basel 10: 1202, 2021. Go to original source...
  71. Ordoñez A.A.L., Gomez J.D., Vattuone M.A., Isla M.I.: Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. - Food Chem. 97: 452-458, 2006. Go to original source...
  72. Parida A., Das A.B., Das P.: NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. - J. Plant Biol. 45: 28-36, 2002. Go to original source...
  73. Penella C., Landi M., Guidi L. et al.: Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. - J. Plant Physiol. 193: 1-11, 2016. Go to original source...
  74. Pérez-López U., Miranda-Apodaca J., Muñoz-Rueda A., Mena-Petite A.: Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. - J. Plant Physiol. 170: 1517-1525, 2013. Go to original source...
  75. Pérez-López U., Sgherri C., Miranda-Apodaca J. et al.: Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2. - Plant Physiol. Biochem. 123: 233-241, 2018. Go to original source...
  76. Poudel S., Vennam R.R., Shrestha A. et al.: Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. - Sci. Rep.-UK 13: 1277, 2023. Go to original source...
  77. Rai V., Sharma N.K., Rai A.K.: Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress. - J. Plant Physiol. 163: 937-944, 2006. Go to original source...
  78. Rengasamy P.: Soil processes affecting crop production in salt-affected soils. - Funct. Plant Biol. 37: 613-620, 2010. Go to original source...
  79. Romani A., Pinelli P., Galardi C. et al.: Polyphenols in greenhouse and open-air-grown lettuce. - Food Chem. 79: 337-342, 2002. Go to original source...
  80. Rouphael Y., Cardarelli M., Rea E., Colla G.: Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. - Photosynthetica 50: 180-188, 2012. Go to original source...
  81. Ruban A.V., Murchie E.H.: Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. -BBA-Bioenergetics 1817: 977-982, 2012. Go to original source...
  82. Samineni S., Siddique K.H.M., Gaur P.M., Colmer T.D.: Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): podding is a particularly sensitive stage. - Environ. Exp. Bot. 71: 260-268, 2011. Go to original source...
  83. Santi C., Bogusz D., Franche C.: Biological nitrogen fixation in non-legume plants. - Ann. Bot.-London 111: 743-767, 2013. Go to original source...
  84. Sarabi B., Fresneau C., Ghaderi N. et al.: Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. - Plant Physiol. Biochem. 141: 1-19, 2019. Go to original source...
  85. Shahverdi M.A., Omidi H., Damalas C.A.: Correction to: Foliar fertilization with micronutrients improves Stevia rebaudiana tolerance to salinity stress by improving root characteristics. - Braz. J. Bot. 45: 843, 2022. Go to original source...
  86. Shapira O.R., Khadka S., Israeli Y. et al.: Functional anatomy controls ion distribution in banana leaves: significance of Na+ seclusion at the leaf margins. - Plant Cell Environ. 32: 476-485, 2009. Go to original source...
  87. Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. - Plant Cell Environ. 30: 1035-1040, 2007. Go to original source...
  88. Sharma N., Acharya S., Kumar K. et al.: Hydroponics as an advanced technique for vegetable production: An overview. - J. Soil Water Conserv. 17: 364-371, 2018. Go to original source...
  89. Shin Y.K., Bhandari S.R., Jo J.S. et al.: Response to salt stress in lettuce: changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. - Agronomy 10: 1627, 2020. Go to original source...
  90. Singleton V.L., Orthofer R., Lamuela-Raventós R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. - In: Methods in Enzymology. Vol. 299. Pp. 152-178. Academic Press, 1999. Go to original source...
  91. Smethurst C.F., Shabala S.: Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. - Funct. Plant Biol. 30: 335-343, 2003. Go to original source...
  92. Statista: U.S. fresh lettuce (romaine and leaf) consumption per capita 2021, 2021. Available at: https://www.statista.com/statistics/257322/per-capita-consumption-of-fresh-lettuce-romaine-and-leaf-in-the-us/.
  93. Sun Y., Gu L., Dickinson R.E. et al.: Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. - Plant Cell Environ. 37: 978-994, 2014. Go to original source...
  94. Syvertsen J.P., Lloyd J., McConchie C. et al.: On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. - Plant Cell Environ. 18: 149-157, 1995. Go to original source...
  95. Tavakkoli E., Fatehi F., Coventry S. et al.: Additive effects of Na+ and Cl- ions on barley growth under salinity stress. - J. Exp. Bot. 62: 2189-2203, 2011. Go to original source...
  96. Wang Y., Stevanato P., Yu L. et al.: The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. - J. Plant Res. 130: 1079-1093, 2017. Go to original source...
  97. Yermiyahu U., Ben-Gal A., Keren R., Reid R.J.: Combined effect of salinity and excess boron on plant growth and yield. - Plant Soil 304: 73-87, 2008. Go to original source...
  98. Yildirim E., Ekinci M., Turan M. et al.: Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). - Arch. Agron. Soil Sci. 61: 1673-1689, 2015. Go to original source...
  99. Yoo C.Y., Pence H.E., Jin J.B. et al.: The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. - Plant Cell 22: 4128-4141, 2010. Go to original source...
  100. Zapata P.J., Serrano M., Pretel M.T. et al.: Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. - Plant Sci. 164: 557-563, 2003. Go to original source...
  101. Zhang L., Xing D.: Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts. - Photoch. Photobio. Sci. 7: 352-360, 2008. Go to original source...
  102. Zhang P., Senge M., Dai Y.: Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. - Commun. Soil Sci. Plant Anal. 48: 624-634, 2017. Go to original source...
  103. Zhao G.Q., Ma B.L., Ren C.Z.: Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. - Crop Sci. 47: 123-131, 2007. Go to original source...
  104. Zribi L., Fatma G., Fatma R. et al.: Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato "Solanum lycopersicum (variety Rio Grande)". - Sci. Hortic.-Amsterdam 120: 367-372, 2009. Go to original source...