Photosynthetica 2024, 62(4):339-350 | DOI: 10.32615/ps.2024.037

Effects of tillage methods on photosynthetic performance of different functional leaf groups of summer maize in coastal saline-alkali farmland

H.-X. LI, †, Y.-F. CHENG1, †, J.-X. FENG2, G.-L. FU3, G.-L. LIU4, P. LIU1, H. REN1, H.-Z. WANG1, B. ZHAO1, G. LI1
1 College of Agronomy, Shandong Agricultural University, Tai'an, 271018 Shandong, China
2 China Tobacco Shandong Industrial Co. Ltd., Jinan, 250014 Shandong, China
3 Jining Academy of Agricultural Sciences, Jining, 272031 Shandong, China
4 Wudi County Agricultural Technology Promotion Center, Binzhou, 251900 Shandong, China

This study aims to determine the changes in the photosynthetic performance of leaves at different leaf positions and their correlation and to screen out the basic tillage methods suitable for improving the yield. The decrease in soil salt content significantly improved the PSII performance index and quantum yield for electron transport of the bottom leaf group, synergistically enhanced the photosynthetic performance of summer maize leaves (especially the bottom leaf group), and enhanced the correlation between the bottom, middle (including the ear leaf), and upper leaf groups. Under subsoiling tillage conditions, the bottom leaves could produce more carbohydrates to meet the normal growth of the root system, promote the photosynthesis of the middle leaf group at the ear position, and increase the nutrient output of the upper leaf group to the female ear in the middle and later stages of maize aging.

Additional key words: leaf group; photosynthetic properties; saline-alkali farmland; summer maize; tillage methods.

Received: May 20, 2024; Revised: September 16, 2024; Accepted: October 7, 2024; Prepublished online: October 31, 2024; Published: December 19, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LI, H.-X., CHENG, Y.-F., FENG, J.-X., FU, G.-L., LIU, G.-L., LIU, P., ... LI, G. (2024). Effects of tillage methods on photosynthetic performance of different functional leaf groups of summer maize in coastal saline-alkali farmland. Photosynthetica62(4), 339-350. doi: 10.32615/ps.2024.037
Download citation

Supplementary files

Download fileLi_3115_supplement.docx

File size: 1.69 MB

References

  1. Abeledo L.G., Savin R., Slafer G.A.: Maize senescence under contrasting source-sink ratios during the grain filling period. - Environ. Exp. Bot. 180: 104263, 2020. Go to original source...
  2. Ali M., Afzal S., Parveen A. et al.: Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. - Plant Physiol. Biochem. 158: 208-218, 2021. Go to original source...
  3. Bengough A.G., McKenzie B.M., Hallett P.D., Valentine T.A.: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. - J. Exp. Bot. 62: 59-68, 2011. Go to original source...
  4. Bian D., Jia G., Cai L. et al.: Effects of tillage practices on root characteristics and root lodging resistance of maize. - Field Crop. Res. 185: 89-96, 2016. Go to original source...
  5. Blanco-Canqui H., Ruis S.J.: No-tillage and soil physical environment. - Geoderma 326: 164-200, 2018. Go to original source...
  6. Borrell A., Hammer G., Van Oosterom E.: Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? - Ann. Appl. Biol. 138: 91-95, 2001. Go to original source...
  7. Burton A.L., Lynch J.P., Brown K.M.: Spatial distribution and phenotypic variation in root cortical aerenchyma of maize (Zea mays L.). - Plant Soil 367: 263-274, 2013. Go to original source...
  8. Cucci G., Lacolla G., Mastro M.A., Caranfa G.: Leaching effect of rainfall on soil under four-year saline water irrigation. - Soil Water Res. 11: 181-189, 2016. Go to original source...
  9. Cui L., Liu Y., Yan J. et al.: Revitalizing coastal saline-alkali soil with biochar application for improved crop growth. - Ecol. Eng. 179: 106594, 2022a. Go to original source...
  10. Cui M.-H., Chen X.-Y., Yin F.-X. et al.: Hybridization affects the structure and function of root microbiome by altering gene expression in roots of wheat introgression line under saline-alkali stress. - Sci. Total Environ. 835: 155467, 2022b. Go to original source...
  11. Cui Q., Xia J., Yang H. et al.: Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. - Sci. Total Environ. 756: 143801, 2021. Go to original source...
  12. Farooq M., Hussain M., Wakeel A., Siddique K.H.M.: Salt stress in maize: effects, resistance mechanisms, and management. A review. - Agron. Sustain. Dev. 35: 461-481, 2015. Go to original source...
  13. Feng N., Yu M., Li Y. et al.: Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. - Ecotox. Environ. Safe. 220: 112369, 2021. Go to original source...
  14. Govaerts B., Mezzalama M., Sayre K. et al.: Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands. - Appl. Soil Ecol. 32: 305-315, 2006. Go to original source...
  15. Hassani A., Azapagic A., Shokri N.: Global predictions of primary soil salinization under changing climate in the 21st century. - Nat. Commun. 12: 6663, 2021. Go to original source...
  16. Hoa P.V., Giang N.V., Binh N.A. et al.: Soil salinity mapping using SAR Sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam). - Remote Sens. 11: 128, 2019. Go to original source...
  17. Jiang J., Feng S., Ma J. et al.: Irrigation management for spring maize grown on saline soil based on SWAP model. - Field Crop. Res. 196: 85-97, 2016. Go to original source...
  18. Ju F., Pang J., Huo Y. et al.: Potassium application alleviates the negative effects of salt stress on cotton (Gossypium hirsutum L.) yield by improving the ionic homeostasis, photosynthetic capacity and carbohydrate metabolism of the leaf subtending the cotton boll. - Field Crop. Res. 272: 108288, 2021. Go to original source...
  19. Kitonyo O.M., Sadras V.O., Zhou Y., Denton M.D.: Nitrogen supply and sink demand modulate the patterns of leaf senescence in maize. - Field Crop. Res. 225: 92-103, 2018. Go to original source...
  20. Li R., Hu D., Ren H. et al.: How delaying post-silking senescence in bottom leaves of maize plants increases carbon and nitrogen accumulation and grain yield. - Crop J. 10: 853-863, 2022. Go to original source...
  21. Liu B., Wang S., Liu X., Sun H.: Evaluating soil water and salt transport in response to varied rainfall events and hydrological years under brackish water irrigation in the North China Plain. - Geoderma 422: 115954, 2022. Go to original source...
  22. Liu S., Hou X., Yang M. et al.: Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. - Catena 165: 279-285, 2018. Go to original source...
  23. Mohanty M., Bandyopadhyay K.K., Painuli D.K. et al.: Water transmission characteristics of a Vertisol and water use efficiency of rainfed soybean (Glycine max (L.) Merr.) under subsoiling and manuring. - Soil Till. Res. 93: 420-428, 2007. Go to original source...
  24. Pierik R., de Wit M.: Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. - J. Exp. Bot. 65: 2815-2824, 2014. Go to original source...
  25. Pommel B., Gallais A., Coque M. et al.: Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. - Eur. J. Agron. 24: 203-211, 2006. Go to original source...
  26. Poorter H., Niklas K.J., Reich P.B. et al.: Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. - New Phytol. 193: 30-50, 2012. Go to original source...
  27. Qadir M., Schubert S., Ghafoor A., Murtaza G.: Amelioration strategies for sodic soils: a review. - Land Degrad. Dev. 12: 357-386, 2001. Go to original source...
  28. Ren B., Li X., Dong S. et al.: Soil physical properties and maize root growth under different tillage systems in the North China Plain. - Crop J. 6: 669-676, 2018. Go to original source...
  29. Rossini M.A., Maddonni G.A., Otegui M.E.: Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. - Field Crop. Res. 121: 373-380, 2011. Go to original source...
  30. Sang X., Wang D., Lin X.: Effects of tillage practices on water consumption characteristics and grain yield of winter wheat under different soil moisture conditions. - Soil Till. Res. 163: 185-194, 2016. Go to original source...
  31. Suárez J.C., Anzola J.A., Contreras A.T. et al.: Photosynthetic and grain yield responses to intercropping of two common bean lines with maize under two types of fertilizer applications in the Colombian Amazon region. - Sci. Hortic.-Amsterdam 301: 111108, 2022. Go to original source...
  32. Sun J., Yang L., Wang Y., Ort D.R.: FACE-ing the global change: Opportunities for improvement in photosynthetic radiation use efficiency and crop yield. - Plant Sci. 177: 511-522, 2009. Go to original source...
  33. Tao Z., Sui P., Chen Y. et al.: Subsoiling and ridge tillage alleviate the high temperature stress in spring maize in the North China Plain. - J. Integr. Agr. 12: 2179-2188, 2013. Go to original source...
  34. Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. - Photosynthetica 58: 275-292, 2020. Go to original source...
  35. Walter J., Lück E., Bauriegel A. et al.: Seasonal dynamics of soil salinity in peatlands: A geophysical approach. - Geoderma 310: 1-11, 2018. Go to original source...
  36. Wang Z., Wang Z., Ma L. et al.: Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton. - Eur. J. Agron. 126: 126267, 2021. Go to original source...
  37. Wu H., Qiao M., Zhang W. et al.: Systemic regulation of photosynthetic function in maize plants at graining stage under a vertically heterogeneous light environment. - J. Integr. Agr. 21: 666-676, 2022. Go to original source...
  38. Xia J., Ren J., Zhang S. et al.: Forest and grass composite patterns improve the soil quality in the coastal saline-alkali farmland of the Yellow River Delta, China. - Geoderma 349: 25-35, 2019. Go to original source...
  39. Xie W., Chen Q., Wu L. et al.: Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. - Soil Till. Res. 198: 104535, 2020. Go to original source...
  40. Xu X., Pang D., Chen J. et al.: Straw return accompany with low nitrogen moderately promoted deep root. - Field Crop. Res. 221: 71-80, 2018. Go to original source...
  41. Yin B., Hu Z., Wang Y. et al.: Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L.) yield in the North China Plain. - Agr. Water Manage. 247: 106732, 2021. Go to original source...
  42. Yuan G., Huan W., Song H. et al.: Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system. - Soil Till. Res. 209: 104958, 2021. Go to original source...
  43. Yue K., Li L., Xie J. et al.: Tillage and nitrogen supply affects maize yield by regulating photosynthetic capacity, hormonal changes and grain filling in the Loess Plateau. - Soil Till. Res. 218: 105317, 2022. Go to original source...
  44. Zhang G., Hou Y., Zhang H. et al.: Optimizing planting pattern and nitrogen application rate improves grain yield and water use efficiency for rain-fed spring maize by promoting root growth and reducing redundant root growth. - Soil Till. Res. 220: 105385, 2022. Go to original source...
  45. Zhang L., Zhou X., Fan Y. et al.: Post-silking nitrogen accumulation and remobilization are associated with green leaf persistence and plant density in maize. - J. Integr. Agr. 18: 1882-1892, 2019. Go to original source...
  46. Zhao R., An L., Tang W. et al.: Improving chlorophyll content detection to suit maize dynamic growth effects by deep features of hyperspectral data. - Field Crop. Res. 297: 108929, 2023. Go to original source...
  47. Zushi K., Matsuzoe N.: Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. - Sci. Hortic.-Amsterdam 219: 216-221, 2017. Go to original source...