Photosynthetica 2025, 63(2):182-195 | DOI: 10.32615/ps.2025.020
The combined effect of Cd and high light stress on the photochemical processes in Arabidopsis thaliana
- Masaryk University, Faculty of Science, Department of Experimental Biology, Laboratory of Photosynthetic Processes, Kamenice 5, 62500 Brno, Czech Republic
The adverse effects of cadmium on plants are accompanied by a limitation of photosynthesis, due to the production of reactive oxygen species, leading to oxidative damage to PSII and the disruption of key protein complexes involved in photosynthetic pathways. We investigated the effects of cadmium stress combined with high light in Arabidopsis thaliana, as dependent on the cadmium dose applied. The aim was to investigate the combined effect of the two stressors on photochemical processes with the hypothesis that Cd stress enhances the negative effect of the high light. The plants were treated with 0, 1, 10, and 50 mM Cd added as CdCl2 solution to soil (potted plants), and a high light stress. The highest dose (50 mM) induced a significant oxidative stress, reduced chlorophyll fluorescence parameters related to PSII functioning and increased energy dissipation mechanisms. Elevated Cd contents impaired the electron transport and limited PSII efficiency. OJIP analysis revealed a Cd-induced K- and L-band appearance documenting LHC-PSII limitation. The combination of Cd and high light stress resulted in the photoinhibition effects in PSII, i.e., a decrease in potential and effective yields of PSII.
Additional key words: cadmium; chlorophyll fluorescence; heavy metal; nonphotochemical quenching; OJIP; photoinhibition; protective mechanisms.
Received: March 7, 2025; Revised: June 2, 2025; Accepted: June 18, 2025; Prepublished online: July 8, 2025; Published: July 10, 2025 Show citation
Supplementary files
| Download file | Giordano_3180_supplement.docx File size: 118.54 kB |
References
- Alloway B.J.: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Pp. 614. Springer, Dordrecht 2013.
Go to original source... - Baldantoni D., Morra L., Zaccardelli M., Alfani A.: Cadmium accumulation in leaves of leafy vegetables. - Ecotox. Environ. Safe. 123: 89-94, 2016.
Go to original source... - Barták M., Hájek J., Halici M.G. et al.: Resistance of primary photosynthesis to photoinhibition in Antarctic lichen Xanthoria elegans: photoprotective mechanisms activated during a short period of high light stress. - Plants-Basel 12: 2259, 2023.
Go to original source... - Bashir H., Qureshi M.I., Ibrahim M.M., Iqbal M.: Chloroplast and photosystems: impact of cadmium and iron deficiency. - Photosynthetica 53: 321-335, 2015.
Go to original source... - Bednaříková M., Váczi P., Lazár D., Barták M.: Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures. - Photosynth. Res. 145: 159-177, 2020.
Go to original source... - Bellini E., Maresca V., Betti C. et al.: The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. - Int. J. Mol. Sci. 21: 1583, 2020.
Go to original source... - Ben Ammar W., Mediouni C., Tray B. et al.: Glutathione and phytochelatin contents in tomato plants exposed to cadmium. -Biol. Plantarum 52: 314-320, 2008.
Go to original source... - Bharagava R.N., Saxena G.: Bioremediation of Industrial Waste for Environmental Safety. Volume II: Biological Agents and Methods for Industrial Waste Management. Pp. 538. Springer, Singapore 2020.
Go to original source... - Bi Y., Chen W., Zhang W. et al.: Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. - Biol. Cell 101: 629-643, 2009.
Go to original source... - Bussotti F., Kalaji M.H., Desotgiu R. et al.: Misurare la vitalità delle piante per mezzo della fluorescenza della clorofilla. [Measuring the vitality of plants using chlorophyll fluorescence.] Pp. 138. Firenze University Press, Florence 2012. [In Italian]
Go to original source... - Cai Y., Qi Y., Zhu S.Q. et al.: Effects of cadmium stress on photosynthetic apparatus of tobacco. - Appl. Ecol. Env. Res. 21: 1917-1929, 2023.
Go to original source... - Chen X., Tao H., Wu Y., Xu X.: Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. - Sci. Hortic.-Amsterdam 305: 111371, 2022.
Go to original source... - Chen Z., Song S., Wen Y. et al.: Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress. - Environ. Sci. Pollut. R. 23: 17910-17918, 2016.
Go to original source... - Cho U.-H., Seo N.-H.: Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. - Plant. Sci. 168: 113-120, 2005.
Go to original source... - Chtouki M., Naciri R., Soulaimani A. et al.: Effect of cadmium and phosphorus interaction on tomato: chlorophyll a fluorescence, plant growth, and cadmium translocation. - Water Air Soil Poll. 232: 84, 2021.
Go to original source... - DalCorso G., Farinati S., Furini A.: Regulatory networks of cadmium stress in plants. - Plant Signal. Behav. 5: 663-667, 2010.
Go to original source... - Danso O.P., Acheampong A., Zhang Z. et al.: The management of Cd in rice with biochar and selenium: effects, efficiency, and practices. - Carbon Res. 2: 41, 2023.
Go to original source... - Deng G., Li M., Li H. et al.: Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). - Aquat. Bot. 112: 23-32, 2014.
Go to original source... - Didaran F., Kordrostami M., Ghasemi-Soloklui A.A. et al.: The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. - J. Photoch. Photobio. B 259: 113004, 2024.
Go to original source... - Dobrikova A.G., Apostolova E.L., Hanć A. et al.: Cadmium toxicity in Salvia sclarea L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. - Ecotox. Environ. Safe. 209: 111851, 2021.
Go to original source... - El Rasafi T., Oukarroum A., Haddioui A. et al.: Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. - Crit. Rev. Env. Sci. Tec. 52: 675-726, 2022.
Go to original source... - Faizan M., Alam P., Hussain A. et al.: Phytochelatins: key regulator against heavy metal toxicity in plants. - Plant Stress 11: 100355, 2024.
Go to original source... - Faizan M., Bhat J.A., Hessini K. et al.: Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. - Ecotox. Environ. Safe. 220: 112401, 2021.
Go to original source... - Faller P., Kienzler K., Krieger-Liszkay A.: Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. - BBA-Bioenergetics 1706: 158-164, 2005.
Go to original source... - Faseela P., Sinisha A.K., Brestič M., Puthur J.T.: Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. - Photosynthetica 58: 293-300, 2020.
Go to original source... - Geiken B., Masojídek J., Rizzuto M. et al.: Incorporation of [35S]methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. - Plant Cell Environ. 21: 1265-1273, 1998.
Go to original source... - Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989.
Go to original source... - Gharbi F., Zribi L., Daly A.B. et al.: Photosynthetic responses of tomato leaves to salt and cadmium stresses: growth and chlorophyll a fluorescence kinetic analyses. - Pol. J. Environ. Stud. 27: 2499-2508, 2018.
Go to original source... - Gonzalez-Mendoza D., Gil F.E., Santamaría J.M., Zapata-Perez O.: Multiple effects of cadmium on the photosynthetic apparatus of Avicennia germinans L. as probed by OJIP chlorophyll fluorescence measurements. - Z. Naturforsch. 62c: 265-272, 2007.
Go to original source... - Guo Y., Lu Y., Goltsev V. et al.: Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal. - Plant Physiol. Biochem. 156: 39-48, 2020.
Go to original source... - Gururani M.A., Upadhyaya C.P., Strasser R.J. et al.: Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. - Plant Sci. 198: 7-16, 2013.
Go to original source... - Han Z., Wei X., Wan D. et al.: Effect of molybdenum on plant physiology and cadmium uptake and translocation in rape (Brassica napus L.) under different levels of cadmium stress. - Int. J. Env. Res. Pub. He. 17: 2355, 2020.
Go to original source... - Haq S.I.U., Benita M.B., de Caralt S.: Photoinhibition and recovery of primary photosynthesis in Antarctic and subantarctic lichens. Analysis of interspecific differences. - Czech Polar Rep. 14: 51-76, 2024.
Go to original source... - Hayat U., din K.u., Haider A. et al.: Salicylic acid-induced antioxidant defense system alleviates cadmium toxicity in wheat. - J. Soil Sci. Plant Nutr. 24: 3068-3086, 2024.
Go to original source... - He L., Yue Z., Chen C. et al.: Enhancing iron uptake and alleviating iron toxicity in wheat by plant growth-promoting bacteria: theories and practices. - Int. J. Agric. Biol. 23: 190-196, 2020.
- Hernandez H.P.V.: Effects of heavy metals ions on primary photosynthetic processes in Antarctic filamentous alga Zygnema sp. - Czech Polar Rep. 6: 180-185, 2016.
Go to original source... - Hikosaka K.: Photosynthesis, chlorophyll fluorescence and photochemical reflectance index in photoinhibited leaves. - Funct. Plant Biol. 48: 815-826, 2021.
Go to original source... - Huang X., Chen H., Chen H. et al.: Spatiotemporal heterogeneity of chlorophyll content and fluorescence response within rice (Oryza sativa L.) canopies under different cadmium stress. - Agronomy 13: 121, 2023.
Go to original source... - Jiang C.-D., Jiang G.-M., Wang X. et al.: Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. - Environ. Exp. Bot. 58: 261-268, 2006.
Go to original source... - Jin H., Liu B., Luo L. et al.: HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and functions in protection of photosystem II from photodamage in Arabidopsis. - Plant Cell 26: 1213-1229, 2014.
Go to original source... - Johnson M.P., Ruban A.V.: Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. - J. Biol. Chem. 286: 19973-19981, 2011.
Go to original source... - Johnson M.P., Zia A., Ruban A.V.: Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. - Planta 235: 193-204, 2012.
Go to original source... - Kalaji H.M., Jajoo A., Oukarroum A. et al.: The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. - In: Ahmad P., Rasool S. (ed.): Emerging Technologies and Management of Crop Stress Tolerance: A Sustainable Approach. Pp. 347-384. Academic Press, San Diego 2014.
Go to original source... - Kalaji H.M., Loboda T.: Photosystem II of barley seedlings under cadmium and lead stress. - Plant Soil Environ. 53: 511-516, 2007.
Go to original source... - Kang Y., Qin H., Wang G. et al.: Selenium nanoparticles mitigate cadmium stress in tomato through enhanced accumulation and transport of sulfate/selenite and polyamines. - J. Agr. Food Chem. 72: 1473-1486, 2024.
Go to original source... - Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. - Physiol. Plantarum 86: 180-187, 1992.
Go to original source... - Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. - Photosynth. Res. 79: 209-218, 2004.
Go to original source... - Krüger G.H.J., De Villiers M.F., Strauss A.J. et al.: Inhibition of photosystem II activities in soybean (Glycine max) genotypes differing in chilling sensitivity. - S. Afr. J. Bot. 95: 85-96, 2014.
Go to original source... - Küpper H., Parameswaran A., Leitenmaier B. et al.: Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. - New Phytol. 175: 655-674, 2007.
Go to original source... - Li J., Yi C., Zhang C. et al.: Effects of light quality on leaf growth and photosynthetic fluorescence of Brasenia schreberi seedlings. - Heliyon 7: e06082, 2021.
Go to original source... - Li X.-P., Björkman O., Shih C. et al.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. - Nature 403: 391-395, 2000.
Go to original source... - Lichtenthaler H.K., Buschmann C., Knapp M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. - Photosynthetica 43: 379-393, 2005.
Go to original source... - Lin Y.-F., Aarts M.G.M.: The molecular mechanism of zinc and cadmium stress response in plants. - Cell. Mol. Life Sci. 69: 3187-3206, 2012.
Go to original source... - Linger P., Ostwald A., Haensler J.: Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. - Biol. Plantarum 49: 567-576, 2005.
Go to original source... - Liu L., Li W., Song W., Guo M.: Remediation techniques for heavy metal-contaminated soils: principles and applicability. -Sci. Total Environ. 633: 206-219, 2018.
Go to original source... - Maksymiec W., Wójcik M., Krupa Z.: Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. - Chemosphere 66: 421-427, 2007.
Go to original source... - Malnoë A.: Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. - Environ. Exp. Bot. 154: 123-133, 2018.
- Manzoor H., Mehwish, Bukhat S. et al.: Methyl jasmonate alleviated the adverse effects of cadmium stress in pea (Pisum sativum L.): a nexus of Photosystem II activity and dynamics of redox balance. - Front. Plant Sci. 13: 860664, 2022.
Go to original source... - Martínez-Peñalver A., Graña E., Reigosa M.J., Sánchez-Moreiras A.M.: The early response of Arabidopsis thaliana to cadmium- and copper-induced stress. - Environ. Exp. Bot. 78: 1-9, 2012.
Go to original source... - Maslać A., Maslać M., Tkalec M.: The impact of cadmium on photosynthetic performance and secondary metabolites in the lichens Parmelia sulcata, Flavoparmelia caperata and Evernia prunastri. - Acta Bot. Croat. 75: 186-193, 2016.
Go to original source... - Matsuoka T., Onozawa A., Sonoike K., Kore-eda S.: Crassulacean acid metabolism induction in Mesembryanthemum crystallinum can be estimated by non-photochemical quenching upon actinic illumination during the dark period. - Plant Cell Physiol. 59: 1966-1975, 2018.
Go to original source... - Merlos Rodrigo M.A., Anjum N.A., Heger Z. et al.: Role of phytochelatins in redox caused stress in plants and animals. - In: Shanker A.K., Shanker C. (ed.): Abiotic and Biotic Stress in Plants: Recent Advances and Future Perspectives. InTech, London 2016.
Go to original source... - Mou R.X., Cao Z.Y., Lin X.Y. et al.: Characterization of the phytochelatins and their derivatives in rice exposed to cadmium based on high-performance liquid chromatography coupled with data-dependent hybrid linear ion trap orbitrap mass spectrometry. - Rapid Commun. Mass Spectrom. 30: 1891-1900, 2016.
Go to original source... - Moustakas M., Dobrikova A., Sperdouli I. et al.: Photosystem II tolerance to excess zinc exposure and high light stress in Salvia sclarea L. - Agronomy 14: 589, 2024.
Go to original source... - Moustakas M., Hanć A., Dobrikova A. et al.: Spatial heterogeneity of cadmium effects on Salvia sclarea leaves revealed by chlorophyll fluorescence imaging analysis and laser ablation inductively coupled plasma mass spectrometry. - Materials 12: 2953, 2019.
Go to original source... - Naciri R., Chtouki M., Oukarroum A. et al.: Mechanisms of cadmium mitigation in tomato plants under orthophosphate and polyphosphate fertilization regimes. - Ecotox. Environ. Safe. 274: 116219, 2024.
Go to original source... - Nishijo M., Nakagawa H., Suwazono Y. et al.: Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case - control analysis of a follow-up study in Japan. - BMJ Open 7: e015694, 2017.
Go to original source... - Orekhova A., Barták M., Casanova-Katny A., Hájek J.: Resistance of Antarctic moss Sanionia uncinata to photoinhibition: chlorophyll fluorescence analysis of samples from the western and eastern coasts of the Antarctic Peninsula. - Plant Biol. 23: 653-663, 2021.
Go to original source... - Pagliano C., Raviolo M., Dalla Vecchia F. et al.: Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). - J. Photoch. Photobio. B 84: 70-78, 2006.
Go to original source... - Parmar P., Kumari N., Sharma V.: Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. - Bot. Stud. 54: 45, 2013.
Go to original source... - Peng J.-S., Gong J.-M.: Vacuolar sequestration capacity and long-distance metal transport in plants. - Front. Plant Sci. 5: 19, 2014.
Go to original source... - Piotto F.A., Carvalho M.E.A., Souza L.A. et al.: Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. - Environ. Sci. Pollut. R. 25: 27535-27544, 2018.
Go to original source... - Pogson B.J., Niyogi K.K., Björkman O., DellaPenna D.: Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. - PNAS 95: 13324-13329, 1998.
Go to original source... - Radeva V., Petrov V., Minkov I. et al.: Effect of cadmium on Arabidopsis thaliana mutants tolerant to oxidative stress. - Biotechnol. Biotec. Eq. 24: 113-118, 2010.
Go to original source... - Rafique M., Noreen Z., Usman S. et al. Mitigation of adverse effect of cadmium toxicity in lettuce (Lactuca sativa L.) through foliar application of chitosan and spermidine. - Sci. Rep.-UK 15: 9062, 2025.
Go to original source... - Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. - Photosynthetica 40: 13-29, 2002.
Go to original source... - Shabbir A., Shah A.A., Usman S. et al.: Efficacy of malic and tartaric acid in mitigation of cadmium stress in Spinacia oleracea L. via modulations in physiological and biochemical attributes. - Sci. Rep.-UK 15: 3366, 2025.
Go to original source... - Sharma A., Kumar V., Shahzad B. et al.: Photosynthetic response of plants under different abiotic stresses: a review. - J. Plant Growth Regul. 39: 509-531, 2020.
Go to original source... - Sharma N., Nagar S., Thakur M. et al.: Photosystems under high light stress: throwing light on mechanism and adaptation. - Photosynthetica 61: 250-263, 2023.
Go to original source... - Shay P.-E., Kubien D.S.: Field analysis of photoprotection in co-occurring cool climate C3 and C4 grasses. - Physiol. Plantarum 147: 316-328, 2013.
Go to original source... - Singh H., Kumar D., Soni V.: Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. - Sci. Rep.-UK 12: 10620, 2022.
Go to original source... - Singh H., Kumar D., Soni V.: Impact of mercury on photosynthetic performance of Lemna minor: a chlorophyll fluorescence analysis. - Sci. Rep.-UK 13: 12181, 2023.
Go to original source... - Song Y., Jin L., Wang X.: Cadmium absorption and transportation pathways in plants. - Int. J. Phytoremediat. 19: 133-141, 2017.
Go to original source... - Soni S., Jha A.B., Dubey R.S., Sharma P.: Mitigating cadmium accumulation and toxicity in plants: the promising role of nanoparticles. - Sci. Total Environ. 912: 168826, 2024.
Go to original source... - Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004.
Go to original source... - Szopiński M., Sitko K., Gieroń Ż. et al.: Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. - Front. Plant Sci. 10: 748, 2019.
Go to original source... - Tietz S., Hall C.C., Cruz J.A., Kramer D.M.: NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. - Plant Cell Environ. 40: 1243-1255, 2017.
Go to original source... - Todorenko D., Volgusheva A., Timofeev N. et al.: Multiple in vivo effects of cadmium on photosynthetic electron transport in pea plants. - Photochem. Photobiol. 97: 1516-1526, 2021.
Go to original source... - Tomar R.S., Jajoo A.: Photosynthetic response in wheat plants caused by the phototoxicity of fluoranthene. - Funct. Plant Biol. 46: 725-731, 2019.
Go to original source... - Van Belleghem F., Cuypers A., Semane B. et al.: Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. - New Phytol. 173: 495-508, 2007.
Go to original source... - Vanhoudt N., Horemans N., Biermans G. et al.: Uranium affects photosynthetic parameters in Arabidopsis thaliana. - Environ. Exp. Bot. 97: 22-29, 2014.
Go to original source... - Verma N., Prasad S.M.: Interplay of hydrogen peroxide and nitric oxide: systemic regulation of photosynthetic performance and nitrogen metabolism in cadmium challenged cyanobacteria. - Physiol. Mol. Biol. Pla. 27: 2181-2199, 2021.
Go to original source... - Waheed A., Zhang Q., Xu H. et al.: Mitigation of cadmium stress by salicylic acid: physiological and biochemical responses in NM-2006, NM-92, and Mash-88 mung bean varieties. - J. Hazard. Mater. 485: 136878, 2025.
Go to original source... - Wang C., Gu Q., Zhao L. et al.: Photochemical efficiency of photosystem II in inverted leaves of soybean [Glycine max (L.) Merr.] affected by elevated temperature and high light. - Front. Plant Sci. 12: 772644, 2022c.
Go to original source... - Wang H., Wang X.-Q., Zeng Z.-L. et al.: Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia. - Plant Sci. 317: 111207, 2022e.
Go to original source... - Wang Q., Xie D., Peng L. et al.: Phytotoxicity of atrazine combined with cadmium on photosynthetic apparatus of the emergent plant species Iris pseudacorus. - Environ. Sci. Pollut. R. 29: 34798-34812, 2022b.
Go to original source... - Wang S., Duo J., Wufuer R. et al.: The binding ability of mercury (Hg) to Photosystem I and II explained the difference in its toxicity on the two photosystems of Chlorella pyrenoidosa. - Toxics 10: 455, 2022a.
Go to original source... - Wang S., Wufuer R., Duo J. et al.: Cadmium caused different toxicity to Photosystem I and Photosystem II of freshwater unicellular algae Chlorella pyrenoidosa (Chlorophyta). - Toxics 10: 352, 2022d.
Go to original source... - Wei J., Huang H., Zhang S. et al.: Functions of violaxanthin de-epoxidase-related (VDR) in the photoprotective response to high-light stress. - Plant Growth Regul. 104: 187-200, 2024.
Go to original source... - Wen X., Qiu N., Lu Q., Lu C.: Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. - Planta 220: 486-497, 2005.
Go to original source... - White A.J., Critchley C.: Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. - Photosynth. Res. 59: 63-72, 1999.
Go to original source... - Wodala B., Eitel G., Gyula T.N. et al.: Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in pea leaves. - Photosynthetica 50: 380-386, 2012.
Go to original source... - Wu Y., Ma L., Liu Q. et al.: The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. - J. Hazard. Mater. 395: 122661, 2020.
Go to original source... - Xin J., Zhao X.H., Tan Q.L. et al.: Effects of cadmium exposure on the growth, photosynthesis, and antioxidant defense system in two radish (Raphanus sativus L.) cultivars. - Photosynthetica 57: 967-973, 2019.
Go to original source... - Yang X., Li J., Yang Z. et al.: Plant growth promoting bacteria and citric acid promote growth and cadmium phytoremediation in ryegrass. - Int. J. Phytoremediat. 26: 382-392, 2024.
Go to original source... - Zhao H., Wang W., Fan Y. et al.: Physiological, photosynthetic characteristic and transcriptome analysis of PsnWRKY70 transgenic Populus simonii × Populus nigra under salt stress. -Int. J. Mol. Sci. 26: 81, 2025.
Go to original source... - Zhou L., Zhou L., Wu H. et al.: Application of chlorophyll fluorescence analysis technique in studying the response of lettuce (Lactuca sativa L.) to cadmium stress. - Sensors 24: 1501, 2024a.
Go to original source... - Zhou R., Xu J., Li L. et al.: Exploration of the effects of cadmium stress on photosynthesis in Oenanthe javanica (Blume) DC. - Toxics 12: 307, 2024b.
Go to original source... - Zhou W., Juneau P., Qiu B.: Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium. - Chemosphere 65: 1738-1746, 2006.
Go to original source... - Zhou X., El-Sappah A.H., Khaskhoussi A. et al.: Nanoparticles: a promising tool against environmental stress in plants. - Front. Plant Sci. 15: 1509047, 2025.
Go to original source... - Zsiros O., Nagy G., Patai R. et al.: Similarities and differences in the effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in Chlorella variabilis. - Front. Plant Sci. 11: 1006, 2020.
Go to original source...




