Photosynthetica 2025, 63(2):196-233 | DOI: 10.32615/ps.2025.012

From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging

D. PANDA, S. MOHANTY, S. DAS, J. SENAPATY, D.B. SAHOO, B. MISHRA, M.J. BAIG, L. BEHERA
ICAR-National Rice Research Institute, Cuttack, Odisha, India

Ensuring global food security requires noninvasive techniques for optimizing resource use and monitoring crop health. Hyperspectral imaging (HSI) enables the precise analysis of plant physiology by capturing spectral data across narrow bands. This review explores HSI's role in agriculture, particularly its integration with unmanned aerial vehicles, AI-driven analytics, and machine learning. These advancements allow real-time monitoring of photosynthesis, chlorophyll fluorescence, and carbon assimilation, linking spectral data to plant health and agronomic decisions. Key indicators such as solar-induced fluorescence and vegetation indices enhance crop stress detection. This work compares HSI-derived metrics in differentiating nutrient deficiencies, drought, and disease. Despite its potential, challenges remain in data standardization and spectral interpretation. This review discusses solutions such as molecular phenotyping and predictive modeling, for AI-driven precision agriculture. Addressing these gaps, HSI is poised to revolutionize farming, improve climate resilience, and ensure food security.

Additional key words: Calvin cycle; chlorophyll fluorescence; crop productivity; hyperspectral imaging; photosynthesis.

Received: January 2, 2025; Revised: March 3, 2025; Accepted: April 7, 2025; Prepublished online: July 8, 2025; Published: July 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
PANDA, D., MOHANTY, S., DAS, S., SENAPATY, J., SAHOO, D.B., MISHRA, B., BAIG, M.J., & BEHERA, L. (2025). From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging. Photosynthetica63(2), 196-233. doi: 10.32615/ps.2025.012
Download citation

References

  1. Aasen H., Honkavaara E., Lucieer A., Zarco-Tejada P.J.: Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: a review of sensor technology, measurement procedures, and data correction workflows. - Remote Sens. 10: 1091, 2018. Go to original source...
  2. Abdullah H.M., Mohana N.T., Khan B.M. et al.: Present and future scopes and challenges of plant pest and disease (P&D) monitoring: remote sensing, image processing, and artificial intelligence perspectives. - Remote Sens. Appl. Soc. Environ. 32: 100996, 2023. Go to original source...
  3. Adão T., Hruąka J., Pádua L. et al.: Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. - Remote Sens. 9: 1110, 2017. Go to original source...
  4. Adetutu A.E., Bayo Y.F., Emmanuel A.A. et al.: A review of hyperspectral imaging analysis techniques for onset crop disease detection, identification and classification. - J. For. Environ. Sci. 40: 1-8, 2024.
  5. Ali A., Imran M.: Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time estimation of LAI & chlorophyll content of kinnow mandarin (Citrus reticulata) fruit orchards. - Sci. Hortic.-Amsterdam 267: 109326, 2020. Go to original source...
  6. Ali F., Razzaq A., Tariq W. et al.: Spectral intelligence: AI-driven hyperspectral imaging for agricultural and ecosystem applications. - Agronomy 14: 2260, 2024. Go to original source...
  7. Antony M.M., Sandeep C.S.S., Matham M.V.: Hyperspectral vision beyond 3D: a review. - Opt. Laser. Eng. 178: 108238, 2024. Go to original source...
  8. Arroyo-Mora J.P., Kalacska M., Inamdar D. et al.: Implementation of a UAV-hyperspectral pushbroom imager for ecological monitoring. - Drones 3: 12, 2019. Go to original source...
  9. Asner G.P., Martin R.E.: Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. - Remote Sens. Environ. 112: 3958-3970, 2008. Go to original source...
  10. Atencia Payares L.K., Gomez-del-Campo M., Tarquis A.M., García M.: Thermal imaging from UAS for estimating crop water status in a Merlot vineyard in semi-arid conditions. - Irrigation Sci. 43: 87-103, 2025. Go to original source...
  11. Bandopadhyay S., Rastogi A., Juszczak R.: Review of top-of-canopy sun-induced fluorescence (SIF) studies from ground, UAV, airborne to space borne observations. - Sensors 20: 1144, 2020. Go to original source...
  12. Banerjee B.P., Raval S., Cullen P.J.: UAV-hyperspectral imaging of spectrally complex environments. - Int. J. Remote Sens. 41: 4136-4159, 2020. Go to original source...
  13. Bannari A., Khurshid K.S., Staenz K., Schwarz J.W.: A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements. - IEEE T. Geosci. Remote 45: 3063-3074, 2007. Go to original source...
  14. Baret F., Houlès V., Guérif M.: Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. - J. Exp. Bot. 58: 869-880, 2007. Go to original source...
  15. Barnes E.M., Clarke T.R., Richards S.E. et al.: Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. - In: Proceedings of the Fifth International Conference on Precision Agriculture. ASA-CSSA-SSSA, Madison 2000.
  16. Barriga J.A., Blanco-Cipollone F., Trigo-Córdoba E. et al.: Crop-water assessment in citrus (Citrus sinensis L.) based on continuous measurements of leaf-turgor pressure using machine learning and IoT. - Expert Syst. Appl. 209: 118255, 2022. Go to original source...
  17. Bartold M., Kluczek M.: Estimating of chlorophyll fluorescence parameter Fv/Fm for plant stress detection at peat lands under Ramsar Convention with Sentinel-2 satellite imagery. - Ecol. Inform. 81: 102603, 2024. Go to original source...
  18. Bauriegel E., Giebel A., Herppich W.B.: Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. - Sensors 11: 3765-3779, 2011. Go to original source...
  19. Behmann J., Acebron K., Emin D. et al.: Specim IQ: evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. - Sensors 18: 441, 2018. Go to original source...
  20. Belwalkar A., Poblete T., Hornero A. et al.: Improving the accuracy of SIF quantified from moderate spectral resolution airborne hyperspectral imager using SCOPE: assessment with sub-nanometer imagery. - Int. J. Appl. Earth Obs. Geoinf. 134: 104198, 2024. Go to original source...
  21. Benelli A., Cevoli C., Fabbri A.: In-field hyperspectral imaging: an overview on the ground-based applications in agriculture. -J. Agr. Eng. 51: 129-139, 2020. Go to original source...
  22. Benos L., Tagarakis A.C., Dolias G. et al.: Machine learning in agriculture: a comprehensive updated review. - Sensors 21: 3758, 2021. Go to original source...
  23. Bethge H.L., Weisheit I., Dortmund M.S. et al.: Automated image registration of RGB, hyperspectral and chlorophyll fluorescence imaging data. - Plant Methods 20: 175, 2024. Go to original source...
  24. Bhargava P., Yadav P., Barik A.: Computational insights into intrinsically disordered regions in protein-nucleic acid complexes. - Int. J. Biol. Macromol. 277: 134021, 2024. Go to original source...
  25. Bian L., Wang Z., Zhang Y. et al.: A broadband hyperspectral image sensor with high spatio-temporal resolution. - Nature 635: 73-81, 2024. Go to original source...
  26. Bilotta G., Genovese E., Citroni R. et al.: Integration of an innovative atmospheric forecasting simulator and remote sensing data into a geographical information system in the frame of Agriculture 4.0 concept. - AgriEngineering 5: 1280-1301, 2023. Go to original source...
  27. Bioucas-Dias J.M., Plaza A.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. - Proc. SPIE 7830: 79-93, 2010. Go to original source...
  28. Blackburn G.A.: Hyperspectral remote sensing of plant pigments. - J. Exp. Bot. 58: 855-867, 2007. Go to original source...
  29. Bréda N.J.J.: Ground-based measurements of leaf area index: a review of methods, instruments, and current controversies. -J. Exp. Bot. 54: 2403-2417, 2003. Go to original source...
  30. Bukhamsin A., Kosel J., McCabe M.F. et al.: Early and high-throughput plant diagnostics: strategies for disease detection. -Trends Plant Sci. 30: 324-337, 2025. Go to original source...
  31. Camino González C.L.: Detection of water and nutritional stress through chlorophyll fluorescence and radiative transfer models from hyperspectral and thermal imagery. PhD Thesis. Pp. 191. UCOPress, Córdoba 2019.
  32. Carter G.A., Knapp A.K.: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. - Am. J. Bot. 88: 677-684, 2001. Go to original source...
  33. Chakhvashvili E., Machwitz M., Antala M. et al.: Crop stress detection from UAVs: best practices and lessons learned for exploiting sensor synergies. - Precis. Agric. 25: 2614-2642, 2024. Go to original source...
  34. Chang C.Y., Zhou R., Kira O. et al.: An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring. - Agr. Forest Meteorol. 294: 108145, 2020. Go to original source...
  35. Cheekhooree G.: Canopy height assessment in South Australian Pinus radiata plantations using Sentinel-1: a comparative analysis between INSAR and machine learning algorithms. Master Thesis. Pp. 124. Flinders University, Adelaide 2024.
  36. Chen Q., Wang H., Gu M. et al.: Reasonable design pentamerous artificial photosynthesis system for efficient overall CO2 reduction. - Chem. Eng. J. 481: 148656, 2024. Go to original source...
  37. Chou S., Chen J.M., Yu H. et al.: Canopy-level photochemical reflectance index from hyperspectral remote sensing and leaf-level non-photochemical quenching as early indicators of water stress in maize. - Remote Sens. 9: 794, 2017. Go to original source...
  38. Clevers J.G.P.W., Kooistra L.: Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. - IEEE J. Sel. Top. Appl. 5: 574-583, 2012. Go to original source...
  39. da Silva B.C., de Mello Prado R., Baio F.H.R. et al.: New approach for predicting nitrogen and pigments in maize from hyperspectral data and machine learning models. - Remote Sens. Appl. Soc. Environ. 33: 101110, 2024. Go to original source...
  40. Dai Q., Cheng J.H., Sun D.W., Zeng X.A.: Advances in feature selection methods for hyperspectral image processing in food industry applications: a review. - Crit. Rev. Food Sci. Nutr. 55: 1368-1382, 2015. Go to original source...
  41. Dale L.M., Thewis A., Boudry C. et al.: Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. - Appl. Spectrosc. Rev. 48: 142-159, 2013. Go to original source...
  42. Darvishzadeh R., Atzberger C., Skidmore A., Schlerf M.: Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models. - ISPRS J. Photogramm. 66: 894-906, 2011. Go to original source...
  43. Dasari K., Yadav S.A., Kansal L. et al.: Fusion of hyperspectral imaging and convolutional neural networks for early detection of crop diseases in precision agriculture. - In: 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE), Gautam Buddha Nagar, India, 2024. Pp. 1172-1177. IEEE, 2024. Go to original source...
  44. Daughtry C.S.T., Walthall C.L., Kim M.S. et al.: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. - Remote Sens. Environ. 74: 229-239, 2000. Go to original source...
  45. Doughty C.E., Asner G.P., Martin R.E.: Predicting tropical plant physiology from leaf and canopy spectroscopy. - Oecologia 165: 289-299, 2011. Go to original source...
  46. Du L., Luo S.: Spectral-frequency conversion derived from hyperspectral data combined with deep learning for estimating chlorophyll content in rice. - Agriculture 14: 1186, 2024. Go to original source...
  47. Durojaiye A.I., Olorunsogo S.T., Adejumo B.A. et al.: Deep learning techniques for the exploration of hyperspectral imagery potentials in food and agricultural products. - Food Humanity 3: 100365, 2024. Go to original source...
  48. Egesa A.O., Vallejos C.E., Begcy K.: Cell size differences affect photosynthetic capacity in a Mesoamerican and an Andean genotype of Phaseolus vulgaris L. - Front. Plant Sci. 15: 1422814, 2024. Go to original source...
  49. Falcioni R., Antunes W.C., de Oliveira R.B. et al.: Comparative insights into photosynthetic, biochemical, and ultrastructural mechanisms in Hibiscus and Pelargonium plants. - Plants-Basel 13: 2831, 2024. Go to original source...
  50. Falcioni R., dos Santos G.L.A.A., Crusiol L.G.T. et al.: Non-invasive assessment, classification, and prediction of biophysical parameters using reflectance hyperspectroscopy. -Plants-Basel 12: 2526, 2023. Go to original source...
  51. Feng H., Chen G., Xiong L. et al.: Accurate digitization of the chlorophyll distribution of individual rice leaves using hyperspectral imaging and an integrated image analysis pipeline. - Front. Plant Sci. 8: 1238, 2017. Go to original source...
  52. Feng H., Tao H., Li Z. et al.: Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth. - Remote Sens. 14: 3811, 2022. Go to original source...
  53. Finn A., Peters S., Kumar P., OꞌHehir J.: Automated georectification, mosaicking and 3D point cloud generation using UAV-based hyperspectral imagery observed by line scanner imaging sensors. - Remote Sens. 15: 4624, 2023. Go to original source...
  54. Fitzgerald G., Rodriguez D., OꞌLeary G.: Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index - the canopy chlorophyll content index (CCCI). - Field Crop. Res. 116: 318-324, 2010. Go to original source...
  55. Frankenberg C., OꞌDell C., Berry J. et al.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. - Remote Sens. Environ. 147: 1-12, 2014. Go to original source...
  56. Fu P., Meacham-Hensold K., Guan K. et al.: Estimating photosynthetic traits from reflectance spectra: a synthesis of spectral indices, numerical inversion, and partial least square regression. - Plant Cell Environ. 43: 1241-1258, 2020. Go to original source...
  57. Fuentes-Peñailillo F., Gutter K., Vega R., Silva G.C.: Transformative technologies in digital agriculture: leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. - J. Sens. Actuator Netw. 13: 39, 2024. Go to original source...
  58. Gamon J., Serrano L., Surfus J.S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. - Oecologia 112: 492-501, 1997. Go to original source...
  59. Gamon J.A., Huemmrich K.F., Wong C.Y.S. et al.: A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. - PNAS 113: 13087-13092, 2016. Go to original source...
  60. Gao B.C., Davis C., Goetz A.: A review of atmospheric correction techniques for hyperspectral remote sensing of land surfaces and ocean color. - In: 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA. Pp. 1979-1981. IEEE, 2006. Go to original source...
  61. Gao B.-C.: A practical method for simulating AVHRR-consistent NDVI data series using narrow MODIS channels in the 0.5-1.0/spl mu/m spectral range. - IEEE T. Geosci. Remote 38: 1969-1975, 2000. Go to original source...
  62. Gao D., Qiao L., Song D. et al.: In-field chlorophyll estimation based on hyperspectral images segmentation and pixel-wise spectra clustering of wheat canopy. - Biosyst. Eng. 217: 41-55, 2022. Go to original source...
  63. Garbulsky M.F., Peñuelas J., Gamon J. et al.: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis. - Remote Sens. Environ. 115: 281-297, 2011. Go to original source...
  64. García-Vera Y.E., Polochè-Arango A., Mendivelso-Fajardo C.A., Gutiérrez-Bernal F.J.: Hyperspectral image analysis and machine learning techniques for crop disease detection and identification: a review. - Sustainability 16: 6064, 2024. Go to original source...
  65. Garzonio R., Di Mauro B., Colombo R., Cogliati S.: Surface reflectance and sun-induced fluorescence spectroscopy measurements using a small hyperspectral UAS. - Remote Sens. 9: 472, 2017. Go to original source...
  66. Ge X., Ding J., Jin X. et al.: Estimating agricultural soil moisture content through UAV-based hyperspectral images in the arid region. - Remote Sens. 13: 1562, 2021. Go to original source...
  67. Geipel J., Bakken A.K., Jørgensen M., Korsaeth A.: Forage yield and quality estimation by means of UAV and hyperspectral imaging. - Precis. Agric. 22: 1437-1463, 2021. Go to original source...
  68. Gevaert C.M., Suomalainen J., Tang J., Kooistra L.: Generation of spectral-temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. - IEEE J. Sel. Top. Appl. 8: 3140-3146, 2015. Go to original source...
  69. Gitelson A.A., Gritz Y., Merzlyak M.N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. - J. Plant Physiol. 160: 271-282, 2003. Go to original source...
  70. Gitelson A.A., Peng Y., Masek J.G. et al.: Remote estimation of crop gross primary production with Landsat data. - Remote Sens. Environ. 121: 404-414, 2012. Go to original source...
  71. Gitelson A.A., Stark R., Grits U. et al.: Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. - Int. J. Remote Sens. 23: 2537-2562, 2002. Go to original source...
  72. Gitelson A.A., Viña A., Ciganda V. et al.: Remote estimation of canopy chlorophyll content in crops. - Geophys. Res. Lett. 32: L08403, 2005. Go to original source...
  73. Goetz A.F., Vane G., Solomon J.E., Rock B.N.: Imaging spectrometry for earth remote sensing. - Science 228: 1147-1153, 1985. Go to original source...
  74. Gonzalez-Dugo V., Zarco-Tejada P., Berni J.A.J. et al.: Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. - Agr. Forest Meteorol. 154-155: 156-165, 2012. Go to original source...
  75. Grossmann K., Frankenberg C., Magney T.S. et al.: PhotoSpec: a new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. - Remote Sens. Environ. 216: 311-327, 2018. Go to original source...
  76. Guanter L., Zhang Y., Jung M. et al.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. - PNAS 111: E1327-E1333, 2014. Go to original source...
  77. Guerra R., Barrios Y., Díaz M. et al.: A hardware-friendly hyperspectral lossy compressor for next-generation space-grade field programmable gate arrays. - IEEE J. Sel. Top. Appl. 12: 4813-4828, 2019. Go to original source...
  78. Guerri M.F., Distante C., Spagnolo P. et al.: Deep learning techniques for hyperspectral image analysis in agriculture: a review. - ISPRS J. Photogramm. 12: 100062, 2024. Go to original source...
  79. Haboudane D., Miller J.R., Tremblay N. et al.: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. - Remote Sens. Environ. 81: 416-426, 2002. Go to original source...
  80. Hajaj S., El Harti A., Pour A.B. et al.: A review on hyperspectral imagery application for lithological mapping and mineral prospecting: machine learning techniques and future prospects. - Remote Sens. Appl. Soc. Environ. 35: 101218, 2024. Go to original source...
  81. Han S., Liu Z., Chen Z. et al.: Using high-frequency PAR measurements to assess the quality of the SIF derived from continuous field observations. - Remote Sens. 14: 2083, 2022. Go to original source...
  82. Hank T.B., Berger K., Bach H. et al.: Spaceborne imaging spectroscopy for sustainable agriculture: contributions and challenges. - Surv. Geophys. 40: 515-551, 2019. Go to original source...
  83. Haworth M., Marino G., Atzori G. et al.: Plant physiological analysis to overcome limitations to plant phenotyping. - Plants-Basel 12: 4015, 2023. Go to original source...
  84. He R., Meng J., Du Y. et al.: Enhancing regional topsoil total nitrogen mapping through differentiated fusion of ground hyperspectral data and satellite images under low vegetation cover. - Agriculture 14: 2145, 2024. Go to original source...
  85. Hejtmánek J., Stejskal J., Čepl J. et al.: Revealing the complex relationship among hyperspectral reflectance, photosynthetic pigments, and growth in Norway spruce ecotypes. - Front. Plant Sci. 13: 721064, 2022. Go to original source...
  86. Hernández-Clemente R., Hornero A., Mottus M. et al.: Early diagnosis of vegetation health from high-resolution hyperspectral and thermal imagery: lessons learned from empirical relationships and radiative transfer modelling. - Curr. Forestry Rep. 5: 169-183, 2019. Go to original source...
  87. Herrmann I., Karnieli A., Bonfil D.J. et al.: SWIR-based spectral indices for assessing nitrogen content in potato fields. - Int. J. Remote Sens. 31: 5127-5143, 2010. Go to original source...
  88. Hollberg J.L., Schellberg J.: Distinguishing intensity levels of grassland fertilization using vegetation indices. - Remote Sens. 9: 81, 2017. Go to original source...
  89. Homolová L., Malenovský Z., Clevers J.G.P.W. et al.: Review of optical-based remote sensing for plant trait mapping. - Ecol. Complex. 15: 1-16, 2013. Go to original source...
  90. Honkanen M., Heikkinen P., MacArthur A. et al.: UAV-borne measurements of solar-induced chlorophyll fluorescence (SIF) at a boreal site. - In: Westerlund T., Peña Queralta J. (ed.): New Developments and Environmental Applications of Drones. FinDrones 2023. Pp. 115-135. Springer, Cham 2024. Go to original source...
  91. Houborg R., McCabe M.F.: Adapting a regularized canopy reflectance model (REGFLEC) for the retrieval challenges of dryland agricultural systems. - Remote Sens. Environ. 186: 105-120, 2016. Go to original source...
  92. Huang H., Sun Z., Liu S. et al.: Underwater hyperspectral imaging for in situ underwater microplastic detection. - Sci. Total Environ. 776: 145960, 2021. Go to original source...
  93. Huang Y., Ma Q., Wu X. et al.: Estimation of chlorophyll content in Brassica napus based on unmanned aerial vehicle images. -Oil Crop Sci. 7: 149-155, 2022. Go to original source...
  94. Hunt Jr. E.R., Doraiswamy P.C., McMurtrey J.E. et al.: A visible band index for remote sensing leaf chlorophyll content at the canopy scale. - Int. J. Appl. Earth Obs. Geoinf. 21: 103-112, 2013. Go to original source...
  95. Hunt Jr. E.R., Gillham J.H., Daughtry C.S.: Improving potential geographic distribution models for invasive plants by remote sensing. - Rangeland Ecol. Manag. 63: 505-513, 2010. Go to original source...
  96. Imran H.A., Gianelle D., Rocchini D. et al.: VIS-NIR, red-edge and NIR-shoulder based normalized vegetation indices response to co-varying leaf and canopy structural traits in heterogeneous grasslands. - Remote Sens. 12: 2254, 2020. Go to original source...
  97. Ishida T., Kurihara J., Viray F.A. et al.: A novel approach for vegetation classification using UAV-based hyperspectral imaging. - Comput. Electron. Agr. 144: 80-85, 2018. Go to original source...
  98. Islam T., Islam R., Uddin P., Ulhaq A.: Spectrally segmented-enhanced neural network for precise land cover object classification in hyperspectral imagery. - Remote Sens. 16: 807, 2024. Go to original source...
  99. Jacquemoud S., Verhoef W., Baret F. et al.: PROSPECT+SAIL models: A review of use for vegetation characterization. - Remote Sens. Environ. 113: S56-S66, 2009. Go to original source...
  100. Jaggard K.W., Qi A., Ober E.S.: Possible changes to arable crop yields by 2050. - Philos. T. Roy. Soc. B 365: 2835-2851, 2010. Go to original source...
  101. Jia M., Colombo R., Rossini M. et al.: Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales. - Eur. J. Agron. 122: 126192, 2021. Go to original source...
  102. Jiang Y., Snider J.L., Li C. et al.: Ground based hyperspectral imaging to characterize canopy-level photosynthetic activities. - Remote Sens. 12: 315, 2020. Go to original source...
  103. Johnson B., Tateishi R., Kobayashi T.: Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. - Remote Sens. 4: 2619-2634, 2012. Go to original source...
  104. Jones H.G.: Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. - Adv. Bot. Res. 41: 107-163, 2004. Go to original source...
  105. Jones H.G., Leinonen I.: Thermal imaging for the study of plant water relations. - J. Agric. Meteorol. 59: 205-217, 2003. Go to original source...
  106. Jurado-Rodríguez D., Latorre-Hortelano P., René-Dominguez L., Ortega L.M.: 3D modeling of rural environments from multiscale aerial imagery. - Comput. Graph. 122: 103982, 2024. Go to original source...
  107. Kariani R., Supriyadi A.A.: The use of satellite imagery in supporting non-military operations: a geospatial intelligence perspective. - Remote Sens. Technol. Defense Environ. 1: 56-66, 2024.
  108. Khan A., Vibhute A.D., Mali S., Patil C.H.: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. - Ecol. Inform. 69: 101678, 2022. Go to original source...
  109. Khonina S.N., Kazanskiy N.L., Oseledets I.V. et al.: Synergy between artificial intelligence and hyperspectral imagining - a review. - Technologies 12: 163, 2024. Go to original source...
  110. Kokaly R.F., Clark R.N., Swayze G.A. et al.: USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035. Pp. 61. U.S. Geological Survey, Reston 2017. Go to original source...
  111. Kong W., Huang W., Zhou X. et al.: Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data. - J. Appl. Remote Sens. 10: 026035, 2016. Go to original source...
  112. Kumar P., Eriksen R.L., Simko I. et al.: Insights into nitrogen metabolism in the wild and cultivated lettuce as revealed by transcriptome and weighted gene co-expression network analysis. - Sci. Rep.-UK 12: 9852, 2022. Go to original source...
  113. Lai X., Qi G., Kovach C. et al.: Pursuing impactful quantitative proteomics using QC-channels in every spectrum and trend-design in experiment. - J. Am. Soc. Mass Spectr. 35: 674-682, 2024. Go to original source...
  114. Law B.E., Falge E., Gu L. et al.: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. - Agr. Forest Meteorol. 113: 97-120, 2002. Go to original source...
  115. Lee S.-D., Lee J.-H., Kim J.-H. et al.: Evaluation technologies for assessing drought tolerance of Kimchi cabbage seedlings using hyperspectral imaging and principal component analysis. - Microchem. J. 206: 111499, 2024. Go to original source...
  116. Lefsky M.A., Cohen W.B., Parker G.G., Harding D.J.: Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. -BioScience 52: 19-30, 2002. Go to original source...
  117. Lelong C.C.D., Burger P., Jubelin G. et al.: Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. - Sensors 8: 3557-3585, 2008. Go to original source...
  118. Li J., Huang X., Gamba P. et al.: Multiple feature learning for hyperspectral image classification. - IEEE T. Geosci. Remote 53: 1592-1606, 2015. Go to original source...
  119. Lin D., Chen Y., Qiao Y. et al.: A study on an accurate modeling for distinguishing nitrogen, phosphorous and potassium status in summer maize using in situ canopy hyperspectral data. - Comput. Electron. Agr. 221: 108989, 2024. Go to original source...
  120. Liran O.: Formulation of a structural equation relating remotely sensed electron transport rate index to photosynthesis activity. - Remote Sens. 14: 2439, 2022. Go to original source...
  121. Liu G., Liu M., Chao J. et al.: Diagnosis of leaf chlorophyll content based on close-range multispectral fluorescence image correction. - Comput. Electron. Agr. 231: 110040, 2025. Go to original source...
  122. Liu H., Chen J., Xiang Y. et al.: Improving UAV hyperspectral monitoring accuracy of summer maize soil moisture content with an ensemble learning model fusing crop physiological spectral responses. - Eur. J. Agron. 160: 127299, 2024. Go to original source...
  123. Lu B., Dao P.D., Liu J. et al.: Recent advances of hyperspectral imaging technology and applications in agriculture. - Remote Sens. 12: 2659, 2020. Go to original source...
  124. Lu Y., Nie L., Guo X. et al.: Rapid assessment of heavy metal accumulation capability of Sedum alfredii using hyperspectral imaging and deep learning. - Ecotox. Environ. Safe. 282: 116704, 2024. Go to original source...
  125. Maes W.H., Steppe K.: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. - Trends Plant Sci. 24: 152-164, 2019. Go to original source...
  126. Mahlein A.-K., Kuska M.T., Behmann J. et al.: Hyperspectral sensors and imaging technologies in phytopathology: state of the art. - Annu. Rev. Phytopathol. 56: 535-558, 2018. Go to original source...
  127. Mahlein A.-K., Kuska M.T., Thomas S. et al.: Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed! - Curr. Opin. Plant Biol 50: 156-162, 2019. Go to original source...
  128. Maimaitijiang M., Sagan V., Bhadra S. et al.: A fully automated and fast approach for canopy cover estimation using super high-resolution remote sensing imagery. - ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 3: 219-226, 2021. Go to original source...
  129. Maimaitijiang M., Sagan V., Sidike P. et al.: Crop monitoring using satellite/UAV data fusion and machine learning. - Remote Sens. 12: 1357, 2020. Go to original source...
  130. Makarenko M., Burguete-Lopez A., Wang Q. et al.: Hardware-accelerated integrated optoelectronic platform towards real-time high-resolution hyperspectral video understanding. - Nat. Commun. 15: 7051, 2024. Go to original source...
  131. Mallick K., Verfaillie J., Wang T. et al.: Net fluxes of broadband shortwave and photosynthetically active radiation complement NDVI and near infrared reflectance of vegetation to explain gross photosynthesis variability across ecosystems and climate. - Remote Sens. Environ. 307: 114123, 2024. Go to original source...
  132. Mangalraj P., Cho B.-K.: Recent trends and advances in hyperspectral imaging techniques to estimate solar-induced fluorescence for plant phenotyping. - Ecol. Indic. 137: 108721, 2022. Go to original source...
  133. Manne M., Rajitha K., Chakraborty S., Gnanamoorthy P.: A path analysis approach to model the gross primary productivity of mangroves using climate data and optical indices. - Model. Earth Syst. Environ. 10: 509-522, 2024. Go to original source...
  134. Marín-Ortiz J.C., Hoyos-Carvajal L.M., Botero-Fernández V. et al.: Characterizing diploid and tetraploid potato cultivars with reflectance spectroscopy. - Potato Res. 67: 1143-1157, 2024. Go to original source...
  135. Marques P., Pádua L., Sousa J.J., Fernandes-Silva A.: Advancements in remote sensing imagery applications for precision management in olive growing: a systematic review. -Remote Sens. 16: 1324, 2024. Go to original source...
  136. Matsushita B., Yang W., Chen J. et al.: Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. - Sensors 7: 2636-2651, 2007. Go to original source...
  137. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  138. Meacham-Hensold K., Fu P., Wu J. et al.: Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging. - J. Exp. Bot. 71: 2312-2328, 2020. Go to original source...
  139. Merrick T., Jorge M.L.S.P., Silva T.S.F. et al.: Characterization of chlorophyll fluorescence, absorbed photosynthetically active radiation, and reflectance-based vegetation index spectroradiometer measurements. - Int. J. Remote Sens. 41: 6755-6782, 2020. Go to original source...
  140. Mertens S., Verbraeken L., Sprenger H. et al.: Proximal hyperspectral imaging detects diurnal and drought-induced changes in maize physiology. - Front. Plant Sci. 12: 640914, 2021. Go to original source...
  141. Middleton E.M., Huemmrich K.F., Landis D.R. et al.: Photosynthetic efficiency of northern forest ecosystems using a MODIS-derived Photochemical Reflectance Index (PRI). - Remote Sens. Environ. 187: 345-366, 2016. Go to original source...
  142. Mohammed G.H., Colombo R., Middleton E.M. et al.: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. - Remote Sens. Environ. 231: 111177, 2019. Go to original source...
  143. Moncholi-Estornell A., Cendrero-Mateo M.P., Antala M. et al.: Enhancing solar-induced fluorescence interpretation: quantifying fractional sunlit vegetation cover using linear spectral unmixing. - Remote Sens. 15: 4274, 2023. Go to original source...
  144. Mora-Poblete F., Mieres-Castro D., do Amaral Júnior A.T. et al.: Integrating deep learning for phenomic and genomic predictive modeling of Eucalyptus trees. - Ind. Crop. Prod. 220: 119151, 2024. Go to original source...
  145. Mulla D.J.: Twenty-five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. - Biosyst. Eng. 114: 358-371, 2013. Go to original source...
  146. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  147. Mutanga O., Adam E., Cho M.A.: High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. - Int. J. Appl. Earth Obs. Geoinf. 18: 399-406, 2012. Go to original source...
  148. Mutanga O., Skidmore A.K.: Red edge shift and biochemical content in grass canopies. - ISPRS J. Photogramm. 62: 34-42, 2007. Go to original source...
  149. Nakashima N., Kato T., Morozumi T. et al.: Area-ratio Fraunhofer line depth (aFLD) method approach to estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-temperate deciduous broadleaf forest. - J. Plant Res. 134: 713-728, 2021. Go to original source...
  150. Neuwirthová E., Lhotáková Z., Červená L. et al.: Asymmetry of leaf internal structure affects PLSR modelling of anatomical traits using VIS-NIR leaf level spectra. - Eur. J. Remote Sens. 57: 2292154, 2024. Go to original source...
  151. Nie J., Wu K., Li Y. et al.: Advances in hyperspectral remote sensing for precision fertilization decision-making: a comprehensive overview. - Turk. J. Agric. For. 48: 1084-1104, 2024. Go to original source...
  152. Oivukkamäki J., Aalto J., Pfündel E.E. et al.: Field integration of shoot gas-exchange and leaf chlorophyll fluorescence measurements to study the long-term regulation of photosynthesis in situ. -Tree Physiol. 45: tpae162, 2025. Go to original source...
  153. Olakanmi S.J., Jayas D.S., Paliwal J. et al.: Quality characterization of fava bean-fortified bread using hyperspectral imaging. - Foods 13: 231, 2024. Go to original source...
  154. Olorunsogo T., Jacks B.S., Ajala O.A.: Leveraging quantum computing for inclusive and responsible AI development: a conceptual and review framework. - Comput. Sci. IT Res. J. 5: 671-680, 2024. Go to original source...
  155. Olson D., Anderson J.: Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. - Agron. J. 113: 971-992, 2021. Go to original source...
  156. Oppelt N., Muhuri A.: Fundamentals of remote sensing for terrestrial applications: evolution, current state of the art, and future possibilities. - In: Thenkabail P.S. (ed.): Remote Sensing Handbook. Vol. I. Sensors, Data Normalization, Harmonization, Cloud Computing, and Accuracies. Pp. 173-209. CRC Press, Boca Raton 2024. Go to original source...
  157. Pacheco-Labrador J., Cendrero-Mateo M.P., Van Wittenberghe S. et al.: Eco physiological variables retrieval and early stress detection: insights from a synthetic spatial scaling exercise. - Int. J. Remote Sens. 46: 443-468, 2025. Go to original source...
  158. Paloscia S., Pettinato S., Santi E. et al.: Soil moisture mapping using Sentinel-1 images: algorithm and preliminary validation. -Remote Sens. Environ. 134: 234-248, 2013. Go to original source...
  159. Pandey P., Ge Y., Stoerger V., Schnable J.C.: High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. - Front. Plant Sci. 8: 1348, 2017. Go to original source...
  160. Pascucci S., Pignatti S., Casa R. et al.: Special issue "Hyperspectral remote sensing of agriculture and vegetation". - Remote Sens. 12: 3665, 2020. Go to original source...
  161. Patil S.M., Choudhary S., Kholova J. et al.: Applications of UAVs: image-based plant phenotyping. - In: Priyadarshan P.M., Jain S.M., Penna S., Al-Khayri J.M. (ed.): Digital Agriculture: A Solution for Sustainable Food and Nutritional Security. Pp. 341-367. Springer, Cham 2024. Go to original source...
  162. Peng D., Zhang H., Yu L. et al.: Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. - Int. J. Remote Sens. 39: 8022-8040, 2018. Go to original source...
  163. Peñuelas J., Filella I., Gamon J.A.: Assessment of photosynthetic radiation-use efficiency with spectral reflectance. - New Phytol. 131: 291-296, 1995. Go to original source...
  164. Peñuelas J., Pinol J., Ogaya R., Filella I.: Estimation of plant water concentration by the reflectance water index WI (R900/R970). - Int. J. Remote Sens. 18: 2869-2875, 1997. Go to original source...
  165. Polivova M., Brook A.: Detailed investigation of spectral vegetation indices for fine field-scale phenotyping. - In: Carmona E.C., Ortiz A.C., Canas R.Q., Musarella C.M. (ed.): Vegetation Index and Dynamics. IntechOpen, London 2022. Go to original source...
  166. Poorter H., Niinemets Ü., Poorter L. et al.: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. - New Phytol. 182: 565-588, 2009. Go to original source...
  167. Porcar-Castell A., Tyystjärvi E., Atherton J. et al.: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. - J. Exp. Bot. 65: 4065-4095, 2014. Go to original source...
  168. Pretty J., Benton T.G., Bharucha Z.P. et al.: Global assessment of agricultural system redesign for sustainable intensification. - Nat. Sustain. 1: 441-446, 2018. Go to original source...
  169. Putra B.T.W., Soni P.: Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination. - Infrared Phys. Techn. 81: 148-156, 2017. Go to original source...
  170. Ram B.G., Oduor P., Igathinathane C. et al.: A systematic review of hyperspectral imaging in precision agriculture: analysis of its current state and future prospects. - Comput. Electron. Agr. 222: 109037, 2024. Go to original source...
  171. Rascher U., Alonso L., Burkart A. et al.: Sun-induced fluorescence - a new probe of photosynthesis: first maps from the imaging spectrometer HyPlant. - Glob. Change Biol. 21: 4673-4684, 2015. Go to original source...
  172. Raun W.R., Solie J.B., Johnson G.V. et al.: Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. - Agron. J. 94: 815-820, 2002. Go to original source...
  173. Ray D.K., Mueller N.D., West P.C., Foley J.A.: Yield trends are insufficient to double global crop production by 2050. - PLoS ONE 8: e66428, 2013. Go to original source...
  174. Ren Y., Liao L., Maybank S.J. et al.: Hyperspectral image spectral-spatial feature extraction via tensor principal component analysis. - IEEE Geosci. Remote Sens. Lett. 14: 1431-1435, 2017. Go to original source...
  175. Roy D.P., Wulder M.A., Loveland T.R. et al.: Landsat-8: science and product vision for terrestrial global change research. - Remote Sens. Environ. 145: 154-172, 2014. Go to original source...
  176. Ruszczak B., Wijata A.M., Nalepa J.: Unbiasing the estimation of chlorophyll from hyperspectral images: a benchmark dataset, validation procedure, and baseline results. - Remote Sens. 14: 5526, 2022. Go to original source...
  177. Ryu Y.: Upscaling land surface fluxes through hyper resolution remote sensing in space, time, and the spectrum. - J. Geophys. Res.-Biogeo. 129: e2023JG007678, 2024. Go to original source...
  178. Sabater N., Vicent J., Alonso L. et al.: Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy-leaving sun-induced chlorophyll fluorescence. - Remote Sens. 10: 1551, 2018. Go to original source...
  179. Sabin G.P., Soares F.L.F., De Freitas D.L.D. et al.: Hyperspectral imaging applications. - In: Fernandes F.A.N., Rodrigues S., Filho E.G.A. (ed.): Chemometrics: Data Treatment and Applications. Pp. 91-123. Elsevier, Amsterdam 2024. Go to original source...
  180. Sanaeifar A., Yang C., de la Guardia M. et al.: Proximal hyperspectral sensing of abiotic stresses in plants. - Sci. Total Environ. 861: 160652, 2023. Go to original source...
  181. Sarkar S., Sagan V., Bhadra S., Fritschi F.B.: Spectral enhancement of PlanetScope using Sentinel-2 images to estimate soybean yield and seed composition. - Sci. Rep.-UK 14: 15063, 2024. Go to original source...
  182. Seelig H.-D., Hoehn A., Stodieck L.S. et al.: The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. - Int. J. Remote Sens. 29: 3701-3713, 2008. Go to original source...
  183. Serbin S.P., Dillaway D.N., Kruger E.L., Townsend P.A.: Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. - J. Exp. Bot. 63: 489-502, 2012. Go to original source...
  184. Sethy P.K., Pandey C., Sahu Y.K., Behera S.K.: Hyperspectral imagery applications for precision agriculture - a systemic survey. - Multimed. Tools Appl. 81: 3005-3038, 2022. Go to original source...
  185. Shanahan J.F., Schepers J.S., Francis D.D. et al.: Use of remote-sensing imagery to estimate corn grain yield. - Agron. J. 93: 583-589, 2001. Go to original source...
  186. Sharma A.K., Singh A., Sidhu S.K. et al.: Fresh leaf spectroscopy to estimate the crop nutrient status of potato (Solanum tuberosum L.). - Potato Res., 2024. Go to original source...
  187. Shaver T.M.: Ground based active remote sensors for precision nitrogen management in irrigated maize production. PhD Thesis. Pp. 207. Colorado State University, Fort Collins 2009.
  188. Shen Q., Xia K., Zhang S. et al.: Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. - Spectrochim. Acta A 222: 117191, 2019. Go to original source...
  189. Shuai L., Li Z., Chen Z. et al.: A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing. - Comput. Electron. Agr. 217: 108577, 2024. Go to original source...
  190. Siddique A., Cook K., Holt Y. et al.: From plants to pixels: the role of artificial intelligence in identifying Sericea lespedeza in field-based studies. - Agronomy 14: 992, 2024. Go to original source...
  191. Silva L., Conceição L.A., Lidon F.C., Maçãs B.: Remote monitoring of crop nitrogen nutrition to adjust crop models: a review. - Agriculture 13: 835, 2023. Go to original source...
  192. Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. - Remote Sens. Environ. 81: 337-354, 2002. Go to original source...
  193. Small C.: The Landsat ETM+ spectral mixing space. - Remote Sens. Environ. 93: 1-17, 2004. Go to original source...
  194. Smigaj M., Agarwal A., Bartholomeus H. et al.: Thermal infrared remote sensing of stress responses in forest environments: a review of developments, challenges, and opportunities. - Curr. Forestry Rep. 10: 56-76, 2024. Go to original source...
  195. Sobejano-Paz V., Mikkelsen T.N., Baum A. et al.: Hyperspectral and thermal sensing of stomatal conductance, transpiration, and photosynthesis for soybean and maize under drought. - Remote Sens. 12: 3182, 2020. Go to original source...
  196. Somers B., Delalieux S., Verstraeten W.W. et al.: An automated waveband selection technique for optimized hyperspectral mixture analysis. - Int. J. Remote Sens. 31: 5549-5568, 2010. Go to original source...
  197. Song Y., Sapes G., Chang S. et al.: Hyperspectral signals in the soil: plant-soil hydraulic connection and disequilibrium as mechanisms of drought tolerance and rapid recovery. - Plant Cell Environ. 47: 4171-4187, 2024. Go to original source...
  198. Sosa M.V., Lehndorff E., Rodionov A. et al.: Micro-scale resolution of carbon turnover in soil - insights from laser ablation isotope ratio mass spectrometry on water-glass embedded aggregates. - Soil Biol. Biochem. 159: 108279, 2021. Go to original source...
  199. Spasova T., Avetisyan D., Ivanova I., Stankova N.: Assessment of mosses in Antarctica based on remote sensing and chlorophyll fluorescence. - Proc. SPIE 13191: 220-232, 2024. Go to original source...
  200. Steele M.R., Gitelson A.A., Rundquist D.C., Merzlyak M.N.: Nondestructive estimation of anthocyanin content in grapevine leaves. - Am. J. Enol. Vitic. 60: 87-92, 2009. Go to original source...
  201. Sun J., Lu X., Mao H. et al.: Quantitative determination of rice moisture based on hyperspectral imaging technology and BCC-LS-SVR algorithm. - J. Food Process Eng. 40: e12446, 2017. Go to original source...
  202. Swain P.H., Davis S.M.: Remote sensing: the quantitative approach. - IEEE T. Pattern Anal. 3: 713-714, 1981. Go to original source...
  203. Swaminathan V., Thomasson J.A., Hardin R.G. et al.: Radiometric calibration of UAV multispectral images under changing illumination conditions with a downwelling light sensor. - Plant Phenome J. 7: e70005, 2024. Go to original source...
  204. Taiz L., Zeiger E.: Plant Physiology. 5th Edition. Pp. 782. Sinauer Associates Inc., Sunderland 2010.
  205. Thenkabail P.S., Hanjra M.A., Dheeravath V., Gumma M.: Global croplands and their water use from remote sensing and nonremote sensing perspectives. - In: Weng Q. (ed.): Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. Pp. 383-419. CRC Press, Boca Raton 2011. Go to original source...
  206. Tilman D., Balzer C., Hill J., Befort B.L.: Global food demand and the sustainable intensification of agriculture. - PNAS 108: 20260-20264, 2011. Go to original source...
  207. Toyoshima M., Toya Y., Shimizu H.: Flux balance analysis of cyanobacteria reveals selective use of photosynthetic electron transport components under different spectral light conditions. - Photosynth. Res. 143: 31-43, 2020. Go to original source...
  208. Tsouros D.C., Bibi S., Sarigiannidis P.G.: A review on UAV-based applications for precision agriculture. - Information 10: 349, 2019. Go to original source...
  209. Ulaby F.T., Michielssen E., Ravaioli U.: Fundamentals of Applied Electromagnetics. 6th Edition. Pp. 528. Prentice Hall, Hoboken 2010.
  210. Ustin S.L., Gitelson A.A., Jacquemoud S. et al.: Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. - Remote Sens. Environ. 113: S67-S77, 2009. Go to original source...
  211. Varghese R., Cherukuri A.K., Doddrell N.H. et al.: Machine learning in photosynthesis: prospects on sustainable crop development. - Plant Sci. 335: 111795, 2023. Go to original source...
  212. Veramendi W.N.C., Cruvinel P.E.: Method for maize plants counting and crop evaluation based on multispectral images analysis. - Comput. Electron. Agr. 216: 108470, 2024. Go to original source...
  213. Verma B., Singh P., Prasad R. et al.: Leaf chlorophyll content retrieval for AVIRIS-NG imagery using different feature selection and wavelet analysis. - Adv. Space Res. 73: 1304-1315, 2024. Go to original source...
  214. Vidican R., Mălinaș A., Ranta O. et al.: Using remote sensing vegetation indices for the discrimination and monitoring of agricultural crops: a critical review. - Agronomy 13: 3040, 2023. Go to original source...
  215. Wang D., Hu M., Jin Y. et al.: Hyper SIGMA: hyperspectral intelligence comprehension foundation model. - IEEE T. Pattern Anal., 2025. Go to original source...
  216. Wang F., Gao J., Zha Y.: Hyperspectral sensing of heavy metals in soil and vegetation: feasibility and challenges. - ISPRS J. Photogramm. 136: 73-84, 2018. Go to original source...
  217. Wang N., Suomalainen J., Bartholomeus H. et al.: Diurnal variation of sun-induced chlorophyll fluorescence of agricultural crops observed from a point-based spectrometer on a UAV. - Int. J. Appl. Earth Obs. Geoinf. 96: 102276, 2021. Go to original source...
  218. Wang X., Hu Q., Cheng Y. et al.: Hyperspectral image super-resolution meets deep learning: a survey and perspective. - IEEE/CAA J. Autom. Sin. 10: 1668-1691, 2023. Go to original source...
  219. Wang Y., Suarez L., Poblete T. et al.: Evaluating the role of solar-induced fluorescence (SIF) and plant physiological traits for leaf nitrogen assessment in almond using airborne hyperspectral imagery. - Remote Sens. Environ. 279: 113141, 2022. Go to original source...
  220. Wang Z., Feng Y., Jia Y.: Spatio-spectral hybrid compressive sensing of hyperspectral imagery. - Remote Sens. Lett. 6: 199-208, 2015. Go to original source...
  221. Warner E., Cook-Patton S.C., Lewis O.T. et al.: Young mixed planted forests store more carbon than monocultures - a meta-analysis. - Front. For. Glob. Change 6: 1226514, 2023. Go to original source...
  222. Wen T., Li J.-H., Wang Q. et al.: Thermal imaging: the digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. - Sci. Total Environ. 899: 165626, 2023. Go to original source...
  223. Wientjes E., Philippi J., Borst J.W., van Amerongen H.: Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. - BBA-Bioenergetics 1858: 259-265, 2017. Go to original source...
  224. Wu C., Niu Z., Tang Q., Huang W.: Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. - Agr. Forest Meteorol. 148: 1230-1241, 2008. Go to original source...
  225. Wulder M.A., White J.C., Fournier R.A. et al.: Spatially explicit large area biomass estimation: three approaches using forest inventory and remotely sensed imagery in a GIS. - Sensors 8: 529-560, 2008. Go to original source...
  226. Wüpper D., Oluoch W.A., Hadi: Satellite data in agricultural and environmental economics: theory and practice. - In: 32nd International Conference of Agricultural Economists, 2-7 August, 2024, New Delhi, India. Pp. 82. ICAE, New Delhi 2024.
  227. Xiao B., Li S., Dou S. et al.: Comparison of leaf chlorophyll content retrieval performance of citrus using FOD and CWT methods with field-based full-spectrum hyperspectral reflectance data. - Comput. Electron. Agr. 217: 108559, 2024. Go to original source...
  228. Xie C., Chu B., He Y.: Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging. - Food Chem. 245: 132-140, 2018. Go to original source...
  229. Xie Q., Zhou M., Zhao Q. et al.: Multispectral and hyperspectral image fusion by MS/HS fusion net. - In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA. Pp. 1585-1594. IEEE, 2019. Go to original source...
  230. Xie W., Lei J., Cui Y. et al.: Hyperspectral pansharpening with deep priors. - IEEE T. Neur. Net. Lear. 31: 1529-1543, 2020. Go to original source...
  231. Xie Y., Plett D., Evans M. et al.: Hyperspectral imaging detects biological stress of wheat for early diagnosis of crown rot disease. - Comput. Electron. Agr. 217: 108571, 2024. Go to original source...
  232. Xing H., Feng H., Fu J. et al.: Development and application of hyperspectral remote sensing. - In: Li D., Zhao C. (ed.): Computer and Computing Technologies in Agriculture XI. CCTA 2017. IFIP Advances in Information and Communication Technology. Vol. 546. Pp. 271-282. Springer, Cham 2019. Go to original source...
  233. Xiong X., Liu X., Wu W. et al.: Observation of Hunga Tonga volcanic eruption using hyperspectral infrared satellite sensors. - In: 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024. Pp. 5590-5594. IEEE, 2024. Go to original source...
  234. Xu M., Xu J., Liu S. et al.: Multiscale convolutional mask network for hyperspectral unmixing. - IEEE J. Sel. Top. Appl. 17: 3687-3700, 2024. Go to original source...
  235. Yang M., Kang X., Qiu X. et al.: Method for early diagnosis of Verticillium wilt in cotton based on chlorophyll fluorescence and hyperspectral technology. - Comput. Electron. Agr. 216: 108497, 2024. Go to original source...
  236. Yang P., Prikaziuk E., Verhoef W., van der Tol C.: SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals. - Geosci. Model Dev. 14: 4697-4712, 2021. Go to original source...
  237. Yang X., Liu S., Liu Y. et al.: Assessing shaded-leaf effects on photochemical reflectance index (PRI) for water stress detection in winter wheat. - Biogeosciences 16: 2937-2947, 2019. Go to original source...
  238. Yang X., Yu Y., Fan W.: Chlorophyll content retrieval from hyperspectral remote sensing imagery. - Environ. Monit. Assess. 187: 456, 2015. Go to original source...
  239. Yang Z., Tian J., Wang Z., Feng K.: Monitoring the photosynthetic performance of grape leaves using a hyperspectral-based machine learning model. - Eur. J. Agron. 140: 126589, 2022. Go to original source...
  240. Yu Y., Yang X., Fan W.: Remote sensing inversion of leaf maximum carboxylation rate based on a mechanistic photosynthetic model. - IEEE T. Geosci. Remote 60: 1-12, 2022. Go to original source...
  241. Yu Z., Cui W.: Robust hyperspectral image classification using generative adversarial networks. - Inform. Sci. 666: 120452, 2024. Go to original source...
  242. Yue J., Feng H., Jin X. et al.: A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera. - Remote Sens. 10: 1138, 2018. Go to original source...
  243. Yue J., Tian Q., Dong X. et al.: Using hyperspectral crop residue angle index to estimate maize and winter-wheat residue cover: a laboratory study. - Remote Sens. 11: 807, 2019. Go to original source...
  244. Zarco-Tejada P.J., Berni J.A., Suárez L. et al.: Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. - Remote Sens. Environ. 113: 1262-1275, 2009. Go to original source...
  245. Zarco-Tejada P.J., Catalina A., González M.R., Martín P.: Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. - Remote Sens. Environ. 136: 247-258, 2013. Go to original source...
  246. Zarco-Tejada P.J., González-Dugo M.V., Fereres E.: Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. - Remote Sens. Environ. 179: 89-103, 2016. Go to original source...
  247. Zarco-Tejada P.J., González-Dugo V., Berni J.A.J.: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. - Remote Sens. Environ. 117: 322-337, 2012. Go to original source...
  248. Zarco-Tejada P.J., Miller J.R., Mohammed G.H. et al.: Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. - Int. J. Appl. Earth Obs. Geoinf. 3: 321-327, 2001. Go to original source...
  249. Zarco-Tejada P.J., Miller J.R., Morales A. et al.: Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. - Remote Sens. Environ. 90: 463-476, 2004. Go to original source...
  250. Zeng C., King D.J., Richardson M., Shan B.: Fusion of multispectral imagery and spectrometer data in UAV remote sensing. - Remote Sens. 9: 696, 2017. Go to original source...
  251. Zhang C., Kovacs J.M.: The application of small unmanned aerial systems for precision agriculture: a review. - Precis. Agric. 13: 693-712, 2012. Go to original source...
  252. Zhang L., Zhang Q., Wu J et al.: Moisture detection of single corn seed based on hyperspectral imaging and deep learning. -Infrared Phys. Techn. 125: 104279, 2022. Go to original source...
  253. Zhang X., Sun Y., Shang K. et al.: Crop classification based on feature band set construction and object-oriented approach using hyperspectral images. - IEEE J. Sel. Top. Appl. 9: 4117-4128, 2016. Go to original source...
  254. Zhang Y., Guanter L., Berry J.A. et al.: Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. - Glob. Change Biol. 20: 3727-3742, 2014. Go to original source...
  255. Zhang Y., Xiao J., Yan K. et al.: Advances and developments in monitoring and inversion of the biochemical information of crop nutrients based on hyperspectral technology. - Agronomy 13: 2163, 2023. Go to original source...
  256. Zhang Z., Huang L., Wang Q. et al.: UAV hyperspectral remote sensing image classification: a systematic review. - IEEE J. Sel. Top. Appl. 18: 3099-3124, 2025. Go to original source...
  257. Zhao C., Qin B., Feng S. et al.: Hyperspectral image classification with multi-attention transformer and adaptive superpixel segmentation-based active learning. - IEEE T. Image Process. 32: 3606-3621, 2023. Go to original source...
  258. Zhao Y., Zhou L., Wang W. et al.: Visible/near-infrared spectroscopy and hyperspectral imaging facilitate the rapid determination of soluble solids content in fruits. - Food Eng. Rev. 16: 470-496, 2024. Go to original source...
  259. Zheng C., Wang S., Chen J.M. et al.: Modeling transpiration using solar-induced chlorophyll fluorescence and photochemical reflectance index synergistically in a closed-canopy winter wheat ecosystem. - Remote Sens. Environ. 302: 113981, 2024. Go to original source...
  260. Zheng H., Cheng T., Li D. et al.: Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. - Front. Plant Sci. 9: 936, 2018. Go to original source...
  261. Zhi X., Massey-Reed S.R., Wu A. et al.: Estimating photosynthetic attributes from high-throughput canopy hyperspectral sensing in sorghum. - Plant Phenomics 2022: 9768502, 2022. Go to original source...
  262. Zhou J.-J., Zhang Y.-H., Han Z.-M. et al.: Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities. - Remote Sens. 13: 2160, 2021. Go to original source...
  263. Zhu D., Zhong P., Du B., Zhang L.: Attention-based sparse and collaborative spectral abundance learning for hyperspectral subpixel target detection. - Neural Networks 178: 106416, 2024. Go to original source...